SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Riedinger Natascha) "

Sökning: WFRF:(Riedinger Natascha)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hardisty, Dalton S., et al. (författare)
  • A Holocene History Of Dynamic Water Column Redox Conditions In The Landsort Deep, Baltic Sea
  • 2016
  • Ingår i: American Journal of Science. - : American Journal of Science (AJS). - 0002-9599 .- 1945-452X. ; 316:8, s. 713-745
  • Tidskriftsartikel (refereegranskat)abstract
    • The modern Baltic Sea is the world's largest anthropogenically forced anoxic basin. Using integrated geochemical records collected during Integrated Ocean Drilling Program (IODP) Expedition 347 from the deepest and one of the most reducing sub-basins in the Baltic Sea, Landsort Deep, we explore the degree and frequency of natural anoxia through the Baltic Holocene. A marked decrease in carbon-to-sulfur ratios (C/S) from the cores indicate the transition from the Baltic Ice Lake to the current brackish sea, which occurred about 8.5 kyrs B.P. Following this, laminations throughout sediments recording brackish deposition suggest sustained anoxia or extreme low oxygen, while high molybdenum (Mo) concentrations of >100 ppm and iron (Fe) geochemistry suggest water column sulfide accumulation, or euxinia, that persisted beyond seasonal timescales during deposition of two distinct sapropel units. Sedimentary Mo isotope values range from +1.11 to -0.50 permil, which are distinctly fractionated from modern Baltic seawater (+2.26 to -2.67 parts per thousand) and thus indicate that each of the sapropels experienced only weak and/or oscillatory euxinia-in contrast to the more stable euxinic conditions of more restricted basins. A shift in delta Mo-98 starting above the lower sapropel to a distinctly more negative range suggests particularly weak and oscillatory euxinia, with an enhanced contribution of manganese (Mn) redox cycling to Mo deposition relative to the lower portion of the profile. This conclusion is supported by extreme sedimentary Mn enrichments of up to 15 weight percent. We interpret the combined data to indicate episodic but major Baltic inflow events of saline and oxygenated North Sea water into the anoxic Landsort Deep that limited the concentrations and residence time of water column sulfide and caused episodic oxide deposition. Considering the temporal overlap between the most reducing conditions and periods of redox instability, we hypothesize that major Baltic inflows, as is observed today, lead to short-term instability while simultaneously supporting longer-term Baltic anoxia by strengthening the halocline. Ultimately, our results indicate that periods more reducing than the modern Baltic Sea have occurred naturally over the Holocene, but the characteristic dynamic saline inputs have historically prevented the relatively more widespread and stable anoxia observed in other classic restricted basins and will likely continue to do so.
  •  
2.
  • Wehrmann, Laura M., et al. (författare)
  • Iron-controlled oxidative sulfur cycling recorded in the distribution and isotopic composition of sulfur species in glacially influenced fjord sediments of west Svalbard
  • 2017
  • Ingår i: Chemical Geology. - : Elsevier BV. - 0009-2541 .- 1872-6836. ; 466, s. 678-695
  • Tidskriftsartikel (refereegranskat)abstract
    • This study investigates how glacially delivered reactive iron (oxyhydr) oxide and manganese oxide phases influence the biogeochemical cycling of sulfur in sediments of three Arctic fjords and how the biogeochemical signatures of these processes are preserved. Results reveal differences in the concentrations of dissolved iron and manganese in pore-waters and the concentration of solid-phase sulfur species within individual fjords and amongst the three fjords, likely controlled by the varying input of reactive iron (oxyhydr) oxides to the sediment. Broadly, the stations can be divided into three categories based on their biogeochemical signals. Stations in the first category, located in Smeerenburgfjorden, are characterized by relatively low concentrations of (easily) reducible particulate iron phases, increasing concentrations of iron monosulfides, pyrite, and elemental sulfur with depth, and low pore-water dissolved iron and manganese concentrations. Biogeochemical processes at these stations are primarily driven by organoclastic sulfate reduction, sulfur disproportionation and the subsequent reaction and sequestration of sulfide in the sediment as iron monosulfide and pyrite. Sulfur and oxygen isotope values of sulfate display progressive enrichment in heavy isotopes with depth at these stations. In contrast, concentrations of (easily) reducible particulate iron phases and pore-water dissolved iron (up to 850 mu M) and manganese (up to 650 mu M) are very high at stations of the second and third category, located in Kongsfjorden and Van Mijenfjorden, while iron monosulfide and pyrite contents are extremely low. The amount of pyrite and its isotope values in conjunction with organic sulfur compounds provide evidence for a detrital origin of a fraction of these sulfur compounds. At the Kongsfjorden and Van Mijenfjorden stations, oxidative pathways of the sedimentary sulfur cycle, controlled by the high availability of reducible particulate iron phases, play an important role, leading to the effective recycling of sulfide to sulfate through sulfur intermediates and concomitant resupply of the sulfate reservoir with S-32. In both fjords, elemental sulfur was only detected at the outer fjord stations grouped into the third category. Our study provides a framework for interpreting the Fe-S-C geochemistry of similar continental shelf areas in modern settings and ultimately for identifying these environments in the rock record.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy