SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rifai Sami W.) "

Sökning: WFRF:(Rifai Sami W.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Huaraca Huasco, Walter, et al. (författare)
  • Fine root dynamics across pantropical rainforest ecosystems
  • 2021
  • Ingår i: Global Change Biology. - : John Wiley & Sons. - 1354-1013 .- 1365-2486. ; 27:15, s. 3657-3680
  • Tidskriftsartikel (refereegranskat)abstract
    • Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.
  •  
2.
  • Malhi, Yadvinder, et al. (författare)
  • The Global Ecosystems Monitoring network : Monitoring ecosystem productivity and carbon cycling across the tropics
  • 2021
  • Ingår i: Biological Conservation. - : Elsevier BV. - 0006-3207. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • A rich understanding of the productivity, carbon and nutrient cycling of terrestrial ecosystems is essential in the context of understanding, modelling and managing the future response of the biosphere to global change. This need is particularly acute in tropical ecosystems, home to over 60% of global terrestrial productivity, over half of planetary biodiversity, and hotspots of anthropogenic pressure. In recent years there has been a surge of activity in collecting data on the carbon cycle, productivity, and plant functional traits of tropical ecosystems, most intensively through the Global Ecosystems Monitoring network (GEM). The GEM approach provides valuable insights by linking field-based ecosystem ecology with the needs of Earth system science. In this paper, we review and synthesize the context, history and recent scientific output from the GEM network. Key insights have emerged on the spatial and temporal variability of ecosystem productivity and on the role of temperature and drought stress on ecosystem function and resilience. New work across the network is now linking carbon cycling to nutrient cycling and plant functional traits, and subsequently to airborne remote sensing. We discuss some of the novel emerging patterns and practical and methodological challenges of this approach, and examine current and possible future directions, both within this network and as lessons for a more general terrestrial ecosystem observation scheme.
  •  
3.
  • Rifai, Sami W., et al. (författare)
  • ENSO Drives interannual variation of forest woody growth across the tropics
  • 2018
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 373:1760
  • Tidskriftsartikel (refereegranskat)abstract
    • Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy