SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Riffault Sabine) "

Sökning: WFRF:(Riffault Sabine)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hägglund, Sara, et al. (författare)
  • Characterization of an Experimental Vaccine for Bovine Respiratory Syncytial Virus
  • 2014
  • Ingår i: Clinical and Vaccine Immunology. - 1556-6811 .- 1556-679X. ; 21:7, s. 997-1004
  • Tidskriftsartikel (refereegranskat)abstract
    • Bovine respiratory syncytial virus (BRSV) and human respiratory syncytial virus (HRSV) are major causes of respiratory disease in calves and children, respectively, and are priorities for vaccine development. We previously demonstrated that an experimental vaccine, BRSV-immunostimulating complex (ISCOM), is effective in calves with maternal antibodies. The present study focuses on the antigenic characterization of this vaccine for the design of new-generation subunit vaccines. The results of our study confirmed the presence of membrane glycoprotein (G), fusion glycoprotein (F), and nucleoprotein (N) proteins in the ISCOMs, and this knowledge was extended by the identification of matrix (M), M2-1, phosphoprotein (P), small hydrophobic protein (SH) and of cellular membrane proteins, such as the integrins alpha(V)beta(1), alpha(V)beta(3), and alpha(3)beta(1). The quantity of the major protein F was 4- to 5-fold greater than that of N (similar to 77 mu g versus similar to 17 mu g/calf dose), whereas G, M, M2-1, P, and SH were likely present in smaller amounts. The polymerase (L), M2-2, nonstructural 1 (NS1), and NS2 proteins were not detected, suggesting that they are not essential for protection. Sera from the BRSV-ISCOM-immunized calves contained high titers of IgG antibody specific for F, G, N, and SH. Antibody responses against M and P were not detected; however, this does not exclude their role in protective T-cell responses. The absence of immunopathological effects of the cellular proteins, such as integrins, needs to be further confirmed, and their possible contribution to adjuvant functions requires elucidation. This work suggests that a combination of several surface and internal proteins should be included in subunit RSV vaccines and identifies absent proteins as potential candidates for differentiating infected from vaccinated animals.
  •  
2.
  • Hägglund, Sara, et al. (författare)
  • Proteome analysis of bronchoalveolar lavage from calves infected with bovine respiratory syncytial virus-Insights in pathogenesis and perspectives for new treatments
  • 2017
  • Ingår i: PLoS Pathogens. - : PUBLIC LIBRARY SCIENCE. - 1553-7366 .- 1553-7374. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Human and bovine respiratory syncytial viruses (HRSV/BRSV) are major causes of severe lower respiratory tract infections in children and calves, respectively. Shared epidemiological, clinical, pathological and genetic characteristics of these viruses make comparative research highly relevant. To characterise the host response against BRSV infection, bronchoalveolar lavage supernatant (BAL) from i) non-vaccinated, BRSV-infected ii) vaccinated, BRSV-infected and iii) non-infected calves was analysed by tandem mass spectrometry. Proteins were semi-quantified and protein expression was validated by immunoblotting. Correlations between selected proteins and pathology, clinical signs and virus shedding were investigated. Calves with BRSV-induced disease had increased total protein concentrations and a decreased number of proteins identified in BAL. The protein profile was characterised by neutrophil activation and a reduction in identified antioxidant enzymes. The presence of neutrophils in alveolar septa, the expression level of neutrophil-related or antioxidant proteins and LZTFL1 correlated significantly with disease. Citrullinated histone 3, an indicator of extracellular traps (ETs), was only detected in non-vaccinated, BRSV-infected animals. By bringing disequilibrium in the release and detoxification of reactive oxygen species, generating ETs and causing elastine degradation, exaggerated neutrophil responses might exacerbate RSV-induced disease. Neutrophil-mitigating or antioxidant treatments should be further explored.
  •  
3.
  • Riffault, Sabine, et al. (författare)
  • A Single Shot Pre-fusion-Stabilized Bovine RSV F Vaccine is Safe and Effective in Newborn Calves with Maternally Derived Antibodies
  • 2020
  • Ingår i: Vaccines. - : MDPI. - 2076-393X. ; 8:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Achieving safe and protective vaccination against respiratory syncytial virus (RSV) in infants and in calves has proven a challenging task. The design of recombinant antigens with a conformation close to their native form in virus particles is a major breakthrough. We compared two subunit vaccines, the bovine RSV (BRSV) pre-fusion F (preF) alone or with nanorings formed by the RSV nucleoprotein (preF+N). PreF and N proteins are potent antigenic targets for neutralizing antibodies and T cell responses, respectively. To tackle the challenges of neonatal immunization, three groups of six one-month-old calves with maternally derived serum antibodies (MDA) to BRSV received a single intramuscular injection of PreF, preF+N with Montanide (TM) ISA61 VG (ISA61) as adjuvant or only ISA61 (control). One month later, all calves were challenged with BRSV and monitored for virus replication in the upper respiratory tract and for clinical signs of disease over one week, and then post-mortem examinations of their lungs were performed. Both preF and preF+N vaccines afforded safe, clinical, and virological protection against BRSV, with little difference between the two subunit vaccines. Analysis of immune parameters pointed to neutralizing antibodies and antibodies to preF as being significant correlates of protection. Thus, a single shot vaccination with preF appears sufficient to reduce the burden of BRSV disease in calves with MDA.
  •  
4.
  • Valarcher, Jean-Francois, et al. (författare)
  • Single-Shot Vaccines against Bovine Respiratory Syncytial Virus (BRSV) : Comparative Evaluation of Long-Term Protection after Immunization in the Presence of BRSV-Specific Maternal Antibodies
  • 2021
  • Ingår i: Vaccines. - : MDPI. - 2076-393X. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The induction of long-lasting clinical and virological protection is needed for a successful vaccination program against the bovine respiratory syncytial virus (BRSV). In this study, calves with BRSV-specific maternally derived antibodies were vaccinated once, either with (i) a BRSV pre-fusion protein (PreF) and Montanide(TM) ISA61 VG (ISA61, n = 6), (ii) BRSV lacking the SH gene (Delta SHrBRSV, n = 6), (iii) a commercial vaccine (CV, n = 6), or were injected with ISA61 alone (n = 6). All calves were challenged with BRSV 92 days later and were euthanized 13 days post-infection. Based on clinical, pathological, and proteomic data, all vaccines appeared safe. Compared to the controls, PreF induced the most significant clinical and virological protection post-challenge, followed by Delta SHrBRSV and CV, whereas the protection of PreF-vaccinated calves was correlated with BRSV-specific serum immunoglobulin (Ig)G antibody responses 84 days post-vaccination, and the IgG antibody titers of Delta SHrBRSV- and CV-vaccinated calves did not differ from the controls on this day. Nevertheless, strong anamnestic BRSV- and PreF-specific IgG responses occurred in calves vaccinated with either of the vaccines, following a BRSV challenge. In conclusion, PreF and Delta SHrBRSV are two efficient one-shot candidate vaccines. By inducing a protection for at least three months, they could potentially improve the control of BRSV in calves.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy