SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Riiko Kaisa) "

Sökning: WFRF:(Riiko Kaisa)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Luostarinen, Sari, et al. (författare)
  • Manure processing as a pathway to enhance nutrient recycling
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Circular economy is increasingly demanded across the world to minimize the need for non-renewable sources of materials and energy. The need to introduce new nutrients into the current demand from mineral resources could be reduced significantly via nutrient recycling. This means recovery of nutrients from different nutrient-rich side-streams and their reuse in different measures, the most significant being food production. Nutrients, especially phosphorus (P) and nitrogen (N), are vital for crops to grow. The amounts required as fertilizer products are large. Still, at the time of writing nutrients are not effectively recycled, but a significant share is lost as final disposal and emissions. Recyclable nutrients are available in different side-streams from agriculture, municipalities and industry. The most significant recyclable material is animal manure which is traditionally used as a fertilizer. However, due to segregation of crop and animal production, manure is often regionally concentrated so that its nutrients may be available in excess to the region’s need. This may result in excessive use of manure in the regions of concentrated animal production, while the crop producing regions need to rely on mineral fertilizers. Both have negative environmental consequences. Thus, solutions for regional manure reallocation via improving the transportability of manure are needed to reallocate the nutrients to areas in nutrient deficit. To enable such transportation over long distances and to separate P and N from each other and thus enhance their reuse, manure processing could be used.  Manure can be processed with different technologies providing various end-products. The aim of processing is usually to reduce the mass of manure and to concentrate nutrients to improve their transportability. An important aim is also to produce such fertilizer products that replace mineral fertilizers and provide reduced emissions into the environment. Several processing technologies are available and more are being developed. At the time of writing, manure processing is still limited mainly due to challenges with profitability. The investment into large-scale manure processing as required by regional nutrient reallocation is significant and the market for the novel manure-based fertilizer products is only starting to develop. Development of practices for the storage and spreading of the products is also still required.  In this report, examples of regions in need of nutrient reallocation via manure processing are described for the Baltic Sea Region and the potential and challenges of manure processing as one solution to reduced nutrient emissions discussed. Summaries of available processing technologies and their end-products as fertilizer products are also presented.
  •  
2.
  • Sindhöj, Erik, et al. (författare)
  • Technologies and management practices for sustainable manure use in the Baltic Sea Region
  • 2020
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Livestock production in the Baltic Sea Region (BSR) is often geographically concentrated in certain areas, which creates greater livestock density in those areas. The intensification of livestock production seen in recent decades has compounded this problem by generating large amounts of manure to use in a local area. Poor manure management results in loss of nutrients to the air through gaseous emissions and to water though leaching and runoff. These nutrient losses are responsible for considerable negative impacts to the environment, climate and society. During the past decade, there have been multiple BSR projects addressing sustainable manure use. Most projects have focused on one or a few aspects of sustainable manure use, such as reducing ammonia emissions, or reducing leaching and runoff problems, or increasing nutrient use efficiency from manure. Some projects have focused on specific technologies while others focused more on management practices that can improve sustainability.The objective of this report was to synthesize relevant results and recommendations from the previous BSR projects to create a comprehensive list of their recommendations for improving the sustainability of manure use in the BSR. This was done within the context of various aspects of sustainability that have been dealt with in previous projects, and in terms of where along the manure handling chain the measures are to be applied.Aspects of sustainability that were addressed here are decreasing ammonia emissions, reducing greenhouse gas emissions, reducing runoff and leaching, increasing on farm nutrient use, increasing regional nutrient recycling and addressing odors, pathogens, heavy metals and other risks. Possible measures for improving these aspects of sustainable manure nutrient use recommended in the previous projects were summarized and synthesized in relation to where along the manure handling chain the measures should be implemented. These were presented in a matrix of best practices and techniques for sustainable manure nutrient use in the BSR. Aspects of economic sustainability of manure handling and use were discussed as well as how various governance actions can be used in order to help promote the implementation of these best practices.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy