SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ristow M) "

Sökning: WFRF:(Ristow M)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ristow, M, et al. (författare)
  • Frataxin deficiency in pancreatic islets causes diabetes due to loss of beta cell mass
  • 2003
  • Ingår i: Journal of Clinical Investigation. - 0021-9738. ; 112:4, s. 527-534
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing beta cells. We have disrupted expression of the mitochondrial protein frataxin selectively in pancreatic beta cells. Mice were born healthy but subsequently developed impaired glucose tolerance progressing to overt diabetes mellitus. These observations were explained by impairment of insulin secretion due to a loss of beta cell mass in knockout animals. This phenotype was preceded by elevated levels of reactive oxygen species in knockout islets, an increased frequency of apoptosis, and a decreased number of proliferating beta cells. Hence, disruption of the frataxin gene in pancreatic beta cells causes diabetes following cellular growth arrest and apoptosis, paralleled by an increase in reactive oxygen species in islets. These observations might provide insight into the deterioration of beta cell function observed in different subtypes of diabetes in humans.
  •  
2.
  • Fex, Malin, et al. (författare)
  • A beta cell-specific knockout of hormone-sensitive lipase in mice results in hyperglycaemia and disruption of exocytosis.
  • 2009
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 52, s. 271-280
  • Tidskriftsartikel (refereegranskat)abstract
    • AIMS/HYPOTHESIS: The enzyme hormone-sensitive lipase (HSL) is produced and is active in pancreatic beta cells. Because lipids are known to play a crucial role in normal control of insulin release and in the deterioration of beta cell function, as observed in type 2 diabetes, actions of HSL in beta cells may be critical. This notion has been addressed in different lines of HSL knockout mice with contradictory results. METHODS: To resolve this, we created a transgenic mouse lacking HSL specifically in beta cells, and characterised this model with regard to glucose metabolism and insulin secretion, using both in vivo and in vitro methods. RESULTS: We found that fasting basal plasma glucose levels were significantly elevated in mice lacking HSL in beta cells. An IVGTT at 12 weeks revealed a blunting of the initial insulin response to glucose with delayed elimination of the sugar. Additionally, arginine-stimulated insulin secretion was markedly diminished in vivo. Investigation of the exocytotic response in single HSL-deficient beta cells showed an impaired response to depolarisation of the plasma membrane. Beta cell mass and islet insulin content were increased, suggesting a compensatory mechanism, by which beta cells lacking HSL strive to maintain normoglycaemia. CONCLUSIONS/INTERPRETATION: Based on these results, we suggest that HSL, which is located in close proximity of the secretory granules, may serve as provider of a lipid-derived signal essential for normal insulin secretion.
  •  
3.
  •  
4.
  • Meyer, C., et al. (författare)
  • Regular insulin secretory oscillations despite impaired ATP synthesis in Friedreich Ataxia patients
  • 2006
  • Ingår i: Hormone and Metabolic Research. - : Georg Thieme Verlag KG. - 0018-5043 .- 1439-4286. ; 38:10, s. 683-687
  • Tidskriftsartikel (refereegranskat)abstract
    • Friedreich Ataxia is an inherited disorder caused by decreased expression of a mitochondrial protein called frataxin. Deficiency of this protein causes reduced biogenesis of iron-sulfur clusters, and subsequently impaired synthesis and replenishment of ATP in vivo. Basal secretion of insulin occurs in an oscillating manner presumably triggered by ATP-dependent feedback inhibition of glycolytic flux. Hence, individuals with reduced ATP synthesis rates should possibly exhibit impaired insulin secretory oscillations if these were solely dependent on ATP. In the present study Friedreich Ataxia patients with a presumptive impairment of ATP synthesis in pancreatic beta-cells were evaluated for regularity of basal secretory oscillations of insulin. Healthy siblings were employed as controls. in conflict with the initial hypothesis, no differences in regards to oscillation patterns were observed between patients and controls. Supported by ex vivo evidence, these findings tentatively suggest that pulsatile insulin secretion might not be exclusively dependent on ATP feedback inhibition in humans.
  •  
5.
  • Ristow, M, et al. (författare)
  • Deficiency of phosphofructo-1-kinase/muscle subtype in humans is associated with impairment of insulin secretory oscillations
  • 1999
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 48:8, s. 1557-1561
  • Tidskriftsartikel (refereegranskat)abstract
    • In healthy humans, insulin is secreted in an oscillatory manner. While the underlying mechanisms generating these oscillations are not fully established, increasing evidence suggests a central role for phosphofructo-1-kinase/muscle subtype (PFK1-M), which also serves as the predominantly active PFK1 subtype in the pancreatic beta-cell. The fact that normal oscillatory secretion is impaired in subjects with impaired glucose tolerance and healthy relatives of patients with type 2 diabetes suggests that this defect may be involved in the secretory dysfunction. To evaluate a possible link between inherited PFK1-M deficiency in humans (Tarui's disease or glycogenosis type VII) and altered insulin oscillations, in vivo studies were performed. We determined basal insulin oscillations during 2 h of frequent plasma sampling in two related teen-aged individuals with homozygous and heterozygous PFK1-M deficiency compared with nondeficient, unrelated control subjects. As predicted by the underlying hypothesis, normal oscillations in insulin secretion were completely abolished in the individual with homozygous deficiency of PFK1-M and significantly impaired in the heterozygous individual, as shown by spectral density and autocorrelation analyses. Thus, deficiency of PFK1-M subtype in humans appears to be associated with an impaired oscillatory insulin secretion pattern and may contribute to the commonly observed secretion defects occurring in type 2 diabetes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy