SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ritvos Olli) "

Sökning: WFRF:(Ritvos Olli)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angelopoulou, Michailia, et al. (författare)
  • Directly immersible silicon photonic probes : Application to rapid SARS-CoV-2 serological testing br
  • 2022
  • Ingår i: Biosensors & bioelectronics. - : Elsevier BV. - 0956-5663 .- 1873-4235. ; 215
  • Tidskriftsartikel (refereegranskat)abstract
    • Silicon photonic probes based on broad-band Mach-Zehnder interferometry are explored for the first time as directly immersible immunosensors alleviating the need for microfluidics and pumps. Each probe includes two U- shaped waveguides allowing light in- and out-coupling from the same chip side through a bifurcated fiber and a mechanical coupler. At the opposite chip side, two Mach-Zehnder interferometers (MZI) are located enabling real-time monitoring of binding reactions by immersion of this chip side into a sample. The sensing arm windows of the two MZIs have different length resulting in two distinct peaks in the Fourier domain, the phase shift of which can be monitored independently through Fast Fourier Transform of the output spectrum. The photonic probes analytical potential was demonstrated through detection of antibodies against SARS-CoV-2 in human serum samples. For this, one MZI was functionalized with the Receptor Binding Domain (RBD) of SARS-CoV-2 Spike 1 protein, and the other with bovine serum albumin to serve as reference. The biofunctionalized probes were immersed for 10 min in human serum sample and then for 5 min in goat anti-human IgG Fc specific antibody solution. Using a humanized rat antibody against SARS-CoV-2 RBD, a detection limit of 20 ng/mL was determined. Analysis of human serum samples indicated that the proposed sensor discriminated completely non- infected/non-vaccinated from vaccinated individuals, and the antibodies levels determined correlated well with those determined in the same samples by ELISA. These results demonstrated the potential of the proposed sensor to serve as an efficient tool for expeditious point-of-care testing
  •  
2.
  • Jalkanen, Pinja, et al. (författare)
  • A Combination of N and S Antigens With IgA and IgG Measurement Strengthens the Accuracy of SARS-CoV-2 Serodiagnostics
  • 2021
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 224:2, s. 218-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. Methods. We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), Si and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. Results. The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. Si and RBD-based EIA results had a strong correlation with microneutralization test results. Conclusions. The data indicate a combination of SARS-CoV-2 Si or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.
  •  
3.
  • Bondestam, Jonas, et al. (författare)
  • cDNA cloning, expression studies and chromosome mapping of human type I serine/threonine kinase receptor ALK7 (ACVR1C)
  • 2001
  • Ingår i: Cytogenetics and Cell Genetics. - : S. Karger AG. - 0301-0171 .- 1421-9816. ; 95:3-4, s. 157-162
  • Tidskriftsartikel (refereegranskat)abstract
    • Transforming growth factor-beta (TGF-beta) superfamily related growth factors signal by binding to transmembrane type I and type II receptor serine/threonine kinases (RSTK), which phosphorylate intracellular Smad transcription factors in response to ligand binding. Here we describe the cloning of the human type I RSTK activin receptor-like kinase 7 (ALK7), an orthologue of the previously identified rat ALK7. Nodal, a TGF-beta member expressed during embryonic development and implicated in developmental events like mesoderm formation and left-right axis specification, was recently shown to signal through ALK7. We found ALK7 mRNA to be most abundantly expressed in human brain, pancreas and colon. A cDNA encoding the open reading frame of ALK7 was obtained from a human brain cDNA library. Furthermore, a P1 artificial chromosome (PAC) clone containing the human ALK7 gene was isolated and fluorescent in situ hybridization (FISH) on metaphase chromosomes identified the gene locus as chromosome 2q24.1-->q3. To test the functionality of the ALK7 signaling, we generated recombinant adenoviruses containing a constitutively active form of ALK7 (Ad-caALK7), which is capable of activating downstream targets in a ligand independent manner. Infection with Ad-caALK7 of MIN6 insulinoma cells, in which ALK7 has previously been shown to be endogenously expressed, led to a marked increase in the phosphorylation of Smad2, a signaling molecule also used by TGF-betas and activins.
  •  
4.
  • Bondestam, Jonas, et al. (författare)
  • Engagement of activin and bone morphogenetic protein signaling pathway Smad proteins in the induction of inhibin B production in ovarian granulosa cells
  • 2002
  • Ingår i: Molecular and Cellular Endocrinology. - 0303-7207 .- 1872-8057. ; 195:1-2, s. 79-88
  • Tidskriftsartikel (refereegranskat)abstract
    • In the mammalian ovary cell growth and differentiation is regulated by several members of the transforming growth factor beta (TGF beta) superfamily including activins, inhibins, growth differentiation factors and bone morphogenetic proteins (BMPs). The effects of TGF beta family members are mediated to the target cells via heteromeric complexes of type I and II serine/threonine kinase receptors which activate Smad signaling protein pathways in various cell types. We have previously shown that inhibin B, a hormonally important product from human granulosa cells, is up regulated by activin and BMPs. Here, we report the use of adenoviral gene transfer methodology to manipulate the TGF beta growth factor signaling system in primary cultures of human granulosa cells. These cells are exceedingly difficult to transfect by conventional transfection methods, but were virtually 100% infected with recombinant adenoviruses expressing green fluorescent protein (GFP). Adenoviruses expressing constitutively active forms of the seven known mammalian type I activin receptor-like kinase receptors (Ad-caALK1 through Ad-caALK7) cause activation of endogenous and adenovirally transferred Smad signaling proteins so that Ad-caALK1/2/3/6 and Ad-caALK4/5/7 induced phosphorylation of the Smad1 and Smad2 pathways, respectively. Activin A and BMP-2 activated the Smad1 and Smad2 pathways as well as inhibin B production as did all the Ad-caALKs. Furthermore, overexpression of adenoviral Smad1 and Smad2 proteins without exogenously added ligands induced inhibin B production. The inhibitory Smad7 protein suppressed BMP-2 and activin induced inhibin B production. Collectively, the present data demonstrate that adenoviral gene transfer provides an effective approach for dissecting the TGF beta signaling pathways in primary ovarian cells in vitro and more specifically indicate that the Smad1 and Smad2 pathways are involved in the regulation of inhibin B production by TGF beta family ligands in the ovary.
  •  
5.
  • Kaivo-Oja, Noora, et al. (författare)
  • Growth differentiation factor-9 induces Smad2 activation and inhibin B production in cultured human granulosa-luteal cells
  • 2003
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 0021-972X .- 1945-7197. ; 88:2, s. 755-762
  • Tidskriftsartikel (refereegranskat)abstract
    • The TGF beta family member growth differentiation factor-9 (GDF-9) is an oocyte-derived factor that is essential for mammalian ovarian folliculogenesis. GDF-9 mRNAs have been shown to be expressed in the human ovarian follicle from the primary follicle stage onward, and recombinant GDF-9 has been shown to promote human ovarian follicle growth in vitro. In this study with primary cultures of human granulosa-luteal (hGL) cells, we investigated whether recombinant GDF-9 activates components of the Smad signaling pathways known to be differentially activated by TGF beta and the bone morphogenetic proteins (BMPs). As with TGF beta, GDF-9 treatment caused the phosphorylation of endogenous 53-kDa proteins detected in Western blots with antiphospho-Smad2 antibodies (alpha PS2). However, unlike BMP-2, GDF-9 did not activate the phosphorylation of antiphospho-Smad1 antibody (alphaPS1)-immunoreactive proteins in hGL cells. Infection of hGL cells with an adenovirus expressing Smad2 (Ad-Smad2) confirmed that GDF-9 activates specifically phosphorylation of the Smad2 protein. Infection of hGL cells with Ad-Smad7, which expresses the inhibitory Smad7 protein, suppressed the levels of both GDF-9-induced endogenous and adenoviral alpha PS2-reactive proteins. Furthermore, GDF-9 increased the steady state levels of inhibin beta(B)-subunit mRNAs in hGL cells and strongly stimulated the secretion of dimeric inhibin B. Again, Ad-Smad7 blocked GDF-9-stimulated inhibin B production in a concentration-dependent manner. We identify here for the first time distinct molecular components of the GDF-9 signaling pathway in the human ovary. Our data suggest that GDF-9 mediates its effect through the pathway commonly activated by TGF beta and activin, but not that activated by many BMPs. The results are also consistent with the suggestion that in addition to endocrine control of inhibin production by gonadotropins, a local paracrine control of inhibin production is likely to occur via oocyte-derived factors in the human ovary.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy