SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Riverol M.) "

Sökning: WFRF:(Riverol M.)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdallah, J., et al. (författare)
  • A measurement of the tau hadronic branching ratios
  • 2006
  • Ingår i: European Physical Journal C. - : Springer Science and Business Media LLC. - 1434-6044 .- 1434-6052. ; 46:1, s. 1-26
  • Tidskriftsartikel (refereegranskat)abstract
    • The exclusive and semi-exclusive branching ratios of the tau lepton hadronic decay modes (h(-)upsilon(tau), h(-)pi(0)upsilon(tau), h(-)pi(0)pi(0)upsilon(tau), h(-) >= 2 pi(0)nu(tau), 2h(-)h(+)upsilon(tau), 2h(-)h(+)>= 2 pi(0)upsilon(tau), 3h(-)2h(+)upsilon(tau) and 3h(-)2h(+) >= 1 pi(0)upsilon(tau)) were measured with data from the DELPHI detector at LEP.
  •  
2.
  •  
3.
  • Lee, J. -Y, et al. (författare)
  • ABRF Proteome Informatics Research Group (iPRG) 2016 Study : Inferring Proteoforms from Bottom-up Proteomics Data
  • 2018
  • Ingår i: Journal of biomolecular techniques : JBT. - : NLM (Medline). - 1943-4731 .- 1524-0215. ; 29:2, s. 39-45
  • Tidskriftsartikel (refereegranskat)abstract
    • This report presents the results from the 2016 Association of Biomolecular Resource Facilities Proteome Informatics Research Group (iPRG) study on proteoform inference and false discovery rate (FDR) estimation from bottom-up proteomics data. For this study, 3 replicate Q Exactive Orbitrap liquid chromatography-tandom mass spectrometry datasets were generated from each of 4 Escherichia coli samples spiked with different equimolar mixtures of small recombinant proteins selected to mimic pairs of homologous proteins. Participants were given raw data and a sequence file and asked to identify the proteins and provide estimates on the FDR at the proteoform level. As part of this study, we tested a new submission system with a format validator running on a virtual private server (VPS) and allowed methods to be provided as executable R Markdown or IPython Notebooks. The task was perceived as difficult, and only eight unique submissions were received, although those who participated did well with no one method performing best on all samples. However, none of the submissions included a complete Markdown or Notebook, even though examples were provided. Future iPRG studies need to be more successful in promoting and encouraging participation. The VPS and submission validator easily scale to much larger numbers of participants in these types of studies. The unique "ground-truth" dataset for proteoform identification generated for this study is now available to the research community, as are the server-side scripts for validating and managing submissions.
  •  
4.
  • Ashwood, C., et al. (författare)
  • Proceedings of the EuBIC-MS 2020 Developers’ Meeting
  • 2020
  • Ingår i: EuPA Open Proteomics. - : Elsevier B.V.. - 2212-9685. ; 24, s. 1-6
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2020 European Bioinformatics Community for Mass Spectrometry (EuBIC-MS) Developers’ meeting was held from January 13th to January 17th 2020 in Nyborg, Denmark. Among the participants were scientists as well as developers working in the field of computational mass spectrometry (MS) and proteomics. The 4-day program was split between introductory keynote lectures and parallel hackathon sessions. During the latter, the participants developed bioinformatics tools and resources addressing outstanding needs in the community. The hackathons allowed less experienced participants to learn from more advanced computational MS experts, and to actively contribute to highly relevant research projects. We successfully produced several new tools that will be useful to the proteomics community by improving data analysis as well as facilitating future research. All keynote recordings are available on https://doi.org/10.5281/zenodo.3890181.
  •  
5.
  • Deutsch, Eric W., et al. (författare)
  • Expanding the Use of Spectral Libraries in Proteomics
  • 2018
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 17:12, s. 4051-4060
  • Tidskriftsartikel (refereegranskat)abstract
    • The 2017 Dagstuhl Seminar on Computational Proteomics provided an opportunity for a broad discussion on ABSTRACT: The 2017 Dagstuhl Seminar on Computational the current state and future directions of the generation and use of peptide tandem mass spectrometry spectral libraries. Their use in proteomics is growing slowly, but there are multiple challenges in the field that must be addressed to further increase the adoption of spectral libraries and related techniques. The primary bottlenecks are the paucity of high quality and comprehensive libraries and the general difficulty of adopting spectral library searching into existing workflows. There are several existing spectral library formats, but none captures a satisfactory level of metadata; therefore, a logical next improvement is to design a more advanced, Proteomics Standards Initiative-approved spectral library format that can encode all of the desired metadata. The group discussed a series of metadata requirements organized into three designations of completeness or quality, tentatively dubbed bronze, silver, and gold. The metadata can be organized at four different levels of granularity: at the collection (library) level, at the individual entry (peptide ion) level, at the peak (fragment ion) level, and at the peak annotation level. Strategies for encoding mass modifications in a consistent manner and the requirement for encoding high-quality and commonly seen but as-yet-unidentified spectra were discussed. The group also discussed related topics, including strategies for comparing two spectra, techniques for generating representative spectra for a library, approaches for selection of optimal signature ions for targeted workflows, and issues surrounding the merging of two or more libraries into one. We present here a review of this field and the challenges that the community must address in order to accelerate the adoption of spectral libraries in routine analysis of proteomics datasets.
  •  
6.
  • LeDuc, Richard D., et al. (författare)
  • Proteomics Standards Initiative's ProForma 2.0 : Unifying the Encoding of Proteoforms and Peptidoforms br
  • 2022
  • Ingår i: Journal of Proteome Research. - : American Chemical Society (ACS). - 1535-3893 .- 1535-3907. ; 21:4, s. 1189-1195
  • Tidskriftsartikel (refereegranskat)abstract
    • It is important for the proteomics community to have a standardizedmanner to represent all possible variations of a protein or peptide primary sequence,including natural, chemically induced, and artifactual modifications. The HumanProteome Organization Proteomics Standards Initiative in collaboration with severalmembers of the Consortium for Top-Down Proteomics (CTDP) has developed astandard notation called ProForma 2.0, which is a substantial extension of the originalProForma notation developed by the CTDP. ProForma 2.0 aims to unify therepresentation of proteoforms and peptidoforms. ProForma 2.0 supports use casesneeded for bottom-up and middle-/top-down proteomics approaches and allows theencoding of highly modified proteins and peptides using a human- and machine-readable string. ProForma 2.0 can be used to represent protein modifications in a specified or ambiguous location, designated bymass shifts, chemical formulas, or controlled vocabulary terms, including cross-links (natural and chemical) and atomic isotopes.Notational conventions are based on public controlled vocabularies and ontologies. The most up-to-date full specification documentand information about software implementations are available athttp://psidev.info/proforma.
  •  
7.
  • Moreno, Pablo, et al. (författare)
  • Galaxy-Kubernetes integration: scaling bioinformatics workflows in the cloud
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Making reproducible, auditable and scalable data-processing analysis workflows is an important challenge in the field of bioinformatics. Recently, software containers and cloud computing introduced a novel solution to address these challenges. They simplify software installation, management and reproducibility by packaging tools and their dependencies. In this work we implemented a cloud provider agnostic and scalable container orchestration setup for the popular Galaxy workflow environment. This solution enables Galaxy to run on and offload jobs to most cloud providers (e.g. Amazon Web Services, Google Cloud or OpenStack, among others) through the Kubernetes container orchestrator.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy