SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rivilla Víctor M.) "

Sökning: WFRF:(Rivilla Víctor M.)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harada, N., et al. (författare)
  • The ALCHEMI Atlas: Principal Component Analysis Reveals Starburst Evolution in NGC 253
  • 2024
  • Ingår i: Astrophysical Journal, Supplement Series. - 1538-4365 .- 0067-0049. ; 271:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular lines are powerful diagnostics of the physical and chemical properties of the interstellar medium (ISM). These ISM properties, which affect future star formation, are expected to differ in starburst galaxies from those of more quiescent galaxies. We investigate the ISM properties in the central molecular zone of the nearby starburst galaxy NGC 253 using the ultrawide millimeter spectral scan survey from the Atacama Large Millimeter/submillimeter Array Large Program ALCHEMI. We present an atlas of velocity-integrated images at a 1.″6 resolution of 148 unblended transitions from 44 species, including the first extragalactic detection of HCNH+ and the first interferometric images of C3H+, NO, and HCS+. We conduct a principal component analysis (PCA) on these images to extract correlated chemical species and to identify key groups of diagnostic transitions. To the best of our knowledge, our data set is currently the largest astronomical set of molecular lines to which PCA has been applied. The PCA can categorize transitions coming from different physical components in NGC 253 such as (i) young starburst tracers characterized by high-excitation transitions of HC3N and complex organic molecules versus tracers of on-going star formation (radio recombination lines) and high-excitation transitions of CCH and CN tracing photodissociation regions, (ii) tracers of cloud-collision-induced shocks (low-excitation transitions of CH3OH, HNCO, HOCO+, and OCS) versus shocks from star formation-induced outflows (high-excitation transitions of SiO), as well as (iii) outflows showing emission from HOC+, CCH, H3O+, CO isotopologues, HCN, HCO+, CS, and CN. Our findings show these intensities vary with galactic dynamics, star formation activities, and stellar feedback.
  •  
2.
  • Bao, Min, et al. (författare)
  • Physical properties of the southwest outflow streamer in the starburst galaxy NGC 253 with ALCHEMI
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 687
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims . The physical properties of galactic molecular outflows are important as they could constrain outflow formation mechanisms. In this work, we study the properties of the southwest (SW) outflow streamer including gas kinematics, optical depth, dense gas fraction, and shock strength through molecular emission in the central molecular zone of the starburst galaxy NGC 253. Methods . We imaged the molecular emission in NGC 253 at a spatial resolution of 1.600(∼27 pc at D ∼ 3.5 Mpc) based on data from the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory (ALCHEMI) large program. We traced the velocity and velocity dispersion of molecular gas with the CO(1–0) line and studied the molecular spectra in the region of the SW streamer, the brightest CO streamer in NGC 253. We constrained the optical depth of the CO emission with the CO/13CO(1–0) ratio, the dense gas fraction with the HCN/CO(1–0), H13CN/13CO(1–0) and N2H+/13CO(1–0) ratios, as well as the shock strength with the SiO(2–1)/13CO(1–0) and CH3OH(2k–1k)/13CO(1–0) ratios. Results . The CO/13CO(1–0) integrated intensity ratio is ∼21 in the SW streamer region, which approximates the C/13C isotopic abundance ratio. The higher integrated intensity ratio compared to the disk can be attributed to the optically thinner environment of CO(1–0) emission inside the SW streamer. The HCN/CO(1–0) and SiO(2–1)/13CO(1–0) integrated intensity ratios both approach ∼0.2 in three giant molecular clouds (GMCs) at the base of the outflow streamers, which implies a higher dense gas fraction and strength of fast shocks in those GMCs than in the disk, while the HCN/CO(1–0) integrated intensity ratio is moderate in the SW streamer region. The contours of those two integrated intensity ratios are extended in the directions of outflow streamers, which connect the enhanced dense gas fraction and shock strength with molecular outflow. Moreover, the molecular gas with an enhanced dense gas fraction and shock strength located at the base of the SW streamer shares the same velocity as the outflow. Conclusions . The enhanced dense gas fraction and shock strength at the base of the outflow streamers suggest that star formation inside the GMCs can trigger shocks and further drive the molecular outflow. The increased CO/13CO(1–0) integrated intensity ratio coupled with the moderate HCN/CO(1–0) integrated intensity ratio in the SW streamer region are consistent with the picture that the gas velocity gradient inside the streamer may decrease the optical depth of CO(1–0) emission, as well as the dense gas fraction in the extended streamer region.
  •  
3.
  • Butterworth, Joshua, et al. (författare)
  • Molecular isotopologue measurements toward super star clusters and the relation to their ages in NGC 253 with ALCHEMI
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 686
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Determining the evolution of the CNO isotopes in the interstellar medium (ISM) of starburst galaxies can yield important constraints on the ages of super star clusters (SSCs), or on other aspects and factors contributing to their evolution, such as the initial mass function (IMF). Due to the time-dependent nature of the abundances of isotopes within the ISM -as they are supplied from processes such as nucleosynthesis or chemical fractionation -, this provides the opportunity to test whether or not isotope ratios trace the ages of highly star-forming regions, such as SSCs. Aims. The goal of this study is to investigate whether the isotopic variations in SSC regions within NGC 253 are correlated with their different ages as derived from stellar population modelling. Methods. We measured abundance ratios of CO, HCN, and HCO+ isotopologues in six regions containing SSCs within NGC 253 using high-spatial-resolution (1.6″, ~28 pc) data from the ALCHEMI (ALma Comprehensive High-resolution Extragalactic Molecular Inventory) ALMA Large program. We then analysed these ratios using RADEX radiative transfer modelling, with the parameter space sampled using the nested sampling Monte Carlo algorithm MLFriends. These abundance ratios were then compared to ages predicted in each region via the fitting of observed star-formation tracers (such as Brγ) to Starburst99 starburst stellar population evolution models. Results. We determined the isotopic column density ratios across multiple regions of SSC activity in NGC 253 using non-LTE radiative transfer modelling. We do not find any significant trend with age for the CO and HCN isotopologue ratios on timescales of the ages of the SSC∗ regions observed. However, HCO+ may show a correlation with age over these timescales in 12C/13C. Conclusions. The driving factors of these ratios within SSCs could be the IMF or fractionation effects. To further probe these effects in SSCs over time, a larger sample of SSCs must be observed spanning a larger age range.
  •  
4.
  • Huang, K. Y., et al. (författare)
  • Reconstructing the shock history in the CMZ of NGC 253 with ALCHEMI
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 675
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. HNCO and SiO are well-known shock tracers and have been observed in nearby galaxies, including the nearby (D = 3.5 Mpc) starburst galaxy NGC 253. The simultaneous detection of these two species in regions where the star-formation rate is high may be used to study the shock history of the gas. Aims. We perform a multi-line molecular study of NGC 253 using the shock tracers SiO and HNCO and aim to characterize its gas properties. We also explore the possibility of reconstructing the shock history in the central molecular zone (CMZ) of the galaxy. Methods. Six SiO transitions and eleven HNCO transitions were imaged at high resolution 1.·6 (28 pc) with the Atacama Large Millimeter/submillimeter Array (ALMA) as part of the ALCHEMI Large Programme. Both non local thermaldynamic equilibrium (non-LTE) radiative transfer analysis and chemical modeling were performed in order to characterize the gas properties and investigate the chemical origin of the emission. Results. The nonLTE radiative transfer analysis coupled with Bayesian inference shows clear evidence that the gas traced by SiO has different densities and temperatures than that traced by HNCO, with an indication that shocks are needed to produce both species. Chemical modeling further confirms such a scenario and suggests that fast and slow shocks are responsible for SiO and HNCO production, respectively, in most GMCs. We are also able to infer the physical characteristics of the shocks traced by SiO and HNCO for each GMC. Conclusions. Radiative transfer and chemical analysis of the SiO and HNCO in the CMZ of NGC 253 reveal a complex picture whereby most of the GMCs are subjected to shocks. We speculate on the possible shock scenarios responsible for the observed emission and provide potential history and timescales for each shock scenario. Observations of higher spatial resolution for these two species are required in order to quantitatively differentiate between the possible scenarios.
  •  
5.
  • Martin, S., et al. (författare)
  • ALCHEMI, an ALMA Comprehensive High-resolution Extragalactic Molecular Inventory: Survey presentation and first results from the ACA array
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The interstellar medium is the locus of physical processes affecting the evolution of galaxies which drive or are the result of star formation activity, supermassive black hole growth, and feedback. The resulting physical conditions determine the observable chemical abundances that can be explored through molecular emission observations at millimeter and submillimeter wavelengths. Aims. Our goal is to unveiling the molecular richness of the central region of the prototypical nearby starburst galaxy NGC 253 at an unprecedented combination of sensitivity, spatial resolution, and frequency coverage. Methods. We used the Atacama Large Millimeter/submillimeter Array (ALMA), covering a nearly contiguous 289 GHz frequency range between 84.2 and 373.2 GHz, to image the continuum and spectral line emission at 1.6″(∼28 pc) resolution down to a sensitivity of 30 - 50 mK. This article describes the ALMA Comprehensive High-resolution Extragalactic Molecular Inventory (ALCHEMI) large program. We focus on the analysis of the spectra extracted from the 15″ (∼255 pc) resolution ALMA Compact Array data. Results. We modeled the molecular emission assuming local thermodynamic equilibrium with 78 species being detected. Additionally, multiple hydrogen and helium recombination lines are identified. Spectral lines contribute 5 to 36% of the total emission in frequency bins of 50 GHz. We report the first extragalactic detections of C2H5OH, HOCN, HC3HO, and several rare isotopologues. Isotopic ratios of carbon, oxygen, sulfur, nitrogen, and silicon were measured with multiple species. Concluison. Infrared pumped vibrationaly excited HCN, HNC, and HC3N emission, originating in massive star formation locations, is clearly detected at low resolution, while we do not detect it for HCO+. We suggest high temperature conditions in these regions driving a seemingly "carbon-rich"chemistry which may also explain the observed high abundance of organic species close to those in Galactic hot cores. The Lvib/LIR ratio was used as a proxy to estimate a 3% contribution from the proto super star cluster to the global infrared emission. Measured isotopic ratios with high dipole moment species agree with those within the central kiloparsec of the Galaxy, while those derived from 13C/18O are a factor of five larger, confirming the existence of multiple interstellar medium components within NGC 253 with different degrees of nucleosynthesis enrichment. The ALCHEMI data set provides a unique template for studies of star-forming galaxies in the early Universe.
  •  
6.
  • Petkova, Maya, 1990, et al. (författare)
  • Kinematics of Galactic Centre clouds shaped by shear-seeded solenoidal turbulence
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 525:1, s. 962-968
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size-linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 ('the Brick'), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size-linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud's gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes.
  •  
7.
  • Rivilla, Víctor M., et al. (författare)
  • Ionize Hard: Interstellar PO + Detection
  • 2022
  • Ingår i: Frontiers in Astronomy and Space Sciences. - : Frontiers Media SA. - 2296-987X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first detection of the phosphorus monoxide ion (PO+) in the interstellar medium. Our unbiased and very sensitive spectral survey toward the G+0.693–0.027 molecular cloud covers four different rotational transitions of this molecule, two of which (J = 1–0 and J = 2–1) appear free of contamination from other species. The fit performed, assuming local thermodynamic equilibrium conditions, yields a column density of N=(6.0 ± 0.7) × 1011 cm−2. The resulting molecular abundance with respect to molecular hydrogen is 4.5 × 10–12. The column density of PO+ normalized by the cosmic abundance of P is larger than those of NO+ and SO+, normalized by N and S, by factors of 3.6 and 2.3, respectively. The N(PO+)/N(PO) ratio is 0.12 ± 0.03, more than one order of magnitude higher than that of N(SO+)/N(SO) and N(NO+)/N(NO). These results indicate that P is more efficiently ionized than N and S in the ISM. We have performed new chemical models that confirm that the PO+ abundance is strongly enhanced in shocked regions with high values of cosmic-ray ionization rates (10–15 − 10–14 s−1), as occurring in the G+0.693–0.027 molecular cloud. The shocks sputter the interstellar icy grain mantles, releasing into the gas phase most of their P content, mainly in the form of PH3, which is converted into atomic P, and then ionized efficiently by cosmic rays, forming P+. Further reactions with O2 and OH produces PO+. The cosmic-ray ionization of PO might also contribute significantly, which would explain the high N(PO+)/N(PO) ratio observed. The relatively high gas-phase abundance of PO+ with respect to other P-bearing species stresses the relevance of this species in the interstellar chemistry of P.
  •  
8.
  • Tanaka, Kunihiko, et al. (författare)
  • Volume Density Structure of the Central Molecular Zone NGC 253 through ALCHEMI Excitation Analysis
  • 2024
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 961:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a spatially resolved excitation analysis for the central molecular zone (CMZ) of the starburst galaxy NGC 253 using the data from the Atacama Large Millimeter/submillimeter Array Comprehensive High-resolution Extragalactic Molecular Inventory, whereby we explore parameters distinguishing NGC 253 from the quiescent Milky Way’s Galactic center (GC). Non-LTE analyses employing a hierarchical Bayesian framework are applied to Band 3-7 transitions from nine molecular species to delineate the position-position-velocity distributions of column density ( N H 2 ), volume density ( n H 2 ), and temperature (T kin) at 27 pc resolution. Two distinct components are detected: a low-density component with ( n H 2 , T kin ) ∼ ( 10 3.3 cm − 3 , 85 K ) and a high-density component with ( n H 2 , T kin ) ∼ ( 10 4.4 cm − 3 , 110 K ) , separated at n H 2 ∼ 10 3.8 cm − 3 . NGC 253 has ∼10 times the high-density gas mass and ∼3 times the dense-gas mass fraction of the GC. These properties are consistent with their HCN/CO ratio but cannot alone explain the factor of ∼30 difference in their star formation efficiencies (SFEs), contradicting the dense-gas mass to star formation rate scaling law. The n H 2 histogram toward NGC 253 exhibits a shallow declining slope up to n H 2 ∼ 10 6 cm − 3 , while that of the GC steeply drops in n H 2 ≳ 10 4.5 cm − 3 and vanishes at 105 cm−3. Their dense-gas mass fraction ratio becomes consistent with their SFEs when the threshold n H 2 for the dense gas is taken at ∼104.2−4.6 cm−3. The rich abundance of gas above this density range in the NGC 253 CMZ, or its scarcity in the GC, is likely to be the critical difference characterizing the contrasting star formation in the centers of the two galaxies.
  •  
9.
  • Barrientos, Alejandro, et al. (författare)
  • Towards the prediction of molecular parameters from astronomical emission lines using Neural Networks
  • 2021
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 52:1-2, s. 157-182
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular astronomy is a field that is blooming in the era of large observatories such as the Atacama Large Millimeter/Submillimeter Array (ALMA). With modern, sensitive, and high spectral resolution radio telescopes like ALMA and the Square Kilometer Array, the size of the data cubes is rapidly escalating, generating a need for powerful automatic analysis tools. This work introduces MolPred, a pilot study to perform predictions of molecular parameters such as excitation temperature (Tex) and column density (log(N)) from input spectra by the use of neural networks. We used as test cases the spectra of CO, HCO+, SiO and CH3CN between 80 and 400 GHz. Training spectra were generated with MADCUBA, a state-of-the-art spectral analysis tool. Our algorithm was designed to allow the generation of predictions for multiple molecules in parallel. Using neural networks, we can predict the column density and excitation temperature of these molecules with a mean absolute error of 8.5% for CO, 4.1% for HCO+, 1.5% for SiO and 1.6% for CH3CN. The prediction accuracy depends on the noise level, line saturation, and number of transitions. We performed predictions upon real ALMA data. The values predicted by our neural network for this real data differ by 13% from the MADCUBA values on average. Current limitations of our tool include not considering linewidth, source size, multiple velocity components, and line blending.
  •  
10.
  • Behrens, E., et al. (författare)
  • Tracing Interstellar Heating: An ALCHEMI Measurement of the HCN Isomers in NGC 253
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 939:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We analyze HCN and HNC emission in the nearby starburst galaxy NGC 253 to investigate its effectiveness in tracing heating processes associated with star formation. This study uses multiple HCN and HNC rotational transitions observed using the Atacama Large Millimeter/submillimeter Array via the ALCHEMI Large Program. To understand the conditions and associated heating mechanisms within NGC 253's dense gas, we employ Bayesian nested sampling techniques applied to chemical and radiative transfer models, which are constrained using our HCN and HNC measurements. We find that the volume density n H 2 and cosmic-ray ionization rate (CRIR) ζ are enhanced by about an order of magnitude in the galaxy’s central regions as compared to those further from the nucleus. In NGC 253's central giant molecular clouds (GMCs), where observed HCN/HNC abundance ratios are the lowest, n ∼ 105.5 cm−3 and ζ ∼ 10−12 s−1 (greater than 104 times the average Galactic rate). We find a positive correlation in the association of both density and CRIR with the number of star formation-related heating sources (supernova remnants, H ii regions, and super hot cores) located in each GMC, as well as a correlation between CRIRs and supernova rates. Additionally, we see an anticorrelation between the HCN/HNC ratio and CRIR, indicating that this ratio will be lower in regions where ζ is higher. Though previous studies suggested HCN and HNC may reveal strong mechanical heating processes in NGC 253's CMZ, we find cosmic-ray heating dominates the heating budget, and mechanical heating does not play a significant role in the HCN and HNC chemistry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy