SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rizwan Muhammad) "

Sökning: WFRF:(Rizwan Muhammad)

  • Resultat 1-10 av 78
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  • Murray, Christopher J. L., et al. (författare)
  • Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1995-2051
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4–52·0). The TFR decreased from 4·7 livebirths (4·5–4·9) to 2·4 livebirths (2·2–2·5), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3–200·8) since 1950, from 2·6 billion (2·5–2·6) to 7·6 billion (7·4–7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9–1·2) in Cyprus to a high of 7·1 livebirths (6·8–7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07–0·09) in South Korea to 2·4 livebirths (2·2–2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3–0·4) in Puerto Rico to a high of 3·1 livebirths (3·0–3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation.
  •  
3.
  • Stanaway, Jeffrey D., et al. (författare)
  • Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - 1474-547X .- 0140-6736. ; 392:10159, s. 1923-1994
  • Tidskriftsartikel (refereegranskat)abstract
    • Background The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk- outcome associations. Methods We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
  •  
4.
  • Mubeen, Iqra, et al. (författare)
  • Formulation of Modified-Release Bilayer Tablets of Atorvastatin and Ezetimibe : An In-Vitro and In-Vivo Analysis
  • 2022
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 14:18
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of this work was to formulate co-loaded bilayer tablets containing ezetimibe (EZB) and atorvastatin (ATC). ATC loaded in the immediate-release (IR) layer is an HMG CoA reductase inhibitor, while EZB, added in the sustained-release (SR) layer, is a lipid-lowering agent. This study was conducted to evaluate the effects of polymer on the formulation and characterization of bilayer tablets, as well as the therapeutic impact of the concurrent use of both drugs having a sequential release pattern. To obtain the optimized results, four different formulations with variable compositions were developed and evaluated for different parameters. The drug release studies were carried out using a type II dissolution apparatus, using phosphate buffer solution (PBS) of 1.2 pH for IR of EZB for an initial 2 h, followed by 24 h studies for ATC in PBS 6.8 pH. The IR layer showed rapid drug release (96%) in 2 h, while 80% of the ATC was released in 24 h from the SR layer. Locally obtained, 6-week-old female albino rats were selected for in vivo studies. Both preventive and curative models were applied to check the effects of the drug combination on the lipid profile, atherosclerosis and physiology of different organs. Studies have shown that the administration of both drugs with different release patterns has a better therapeutic effect (p < 0.05), both in preventing and in curing hyperlipidemia. Conclusively, through the sequential release of ATC and EZB, a better therapeutic response could be obtained.
  •  
5.
  • Feigin, Valery L., et al. (författare)
  • Global, regional, and national burden of neurological disorders, 1990–2016 : a systematic analysis for the Global Burden of Disease Study 2016
  • 2019
  • Ingår i: Lancet Neurology. - : Elsevier. - 1474-4422 .- 1474-4465. ; 18:5, s. 459-480
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders.Methods: We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach.Findings: Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable).Interpretation: Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies.Funding: Bill & Melinda Gates Foundation.
  •  
6.
  •  
7.
  • Irshad, Muneeb, et al. (författare)
  • Evaluation of BaCo0.Fe-4(0).4Zr0.2-xNixO3-delta perovskite cathode using nickel as a sintering aid for IT-SOFC
  • 2021
  • Ingår i: RSC Advances. - : Royal Society of Chemistry. - 2046-2069. ; 11:24, s. 14475-14483
  • Tidskriftsartikel (refereegranskat)abstract
    • In this research work, BaCo0.Fe-4(0).4Zr0.2-xNixO3-delta (x = 0, 0.01, 0.02, 0.03, 0.04) perovskite cathode material for IT-SOFC is synthesized successfully using a combustion method and sintered at low temperature. The effects of nickel as a sintering aid on the properties of BaCo0.Fe-4(0).Zr-4(0).O-2(3-delta) are investigated through different characterization methods. The addition of nickel increased the densification and grain growth at a lower sintering temperature 1200 degrees C. XRD analysis confirms a single phase of BaCo0.Fe-4(0).Zr-4(0).O-2(3-delta), and an increase in crystalline size is observed. SEM micrographs show formation of dense microstructure with increased nickel concentration. TGA analysis revealed that BaCo0.Fe-4(0).4Zr0.2-xNix cathode materials are thermally stable within the SOFC temperature range, and negligible weight loss of 2.3% is observed. The bonds of hydroxyl groups and metal oxides are confirmed for all samples through FTIR analysis. The highest electrical properties are observed for BaCo0.Fe-4(0).4Zr0.2-xNix (x = 0.04) due to increased densification and electronic defects compared to other compositions. The maximum power density of 0.47 W cm(-2) is obtained for a cell having cathode material BaCo0.Fe-4(0).4Zr0.2-xNix (x = 0.02) owing to its permeable and well-connected structure compared to others.
  •  
8.
  • Mehran, Muhammad Taqi, et al. (författare)
  • A comprehensive review on durability improvement of solid oxide fuel cells for commercial stationary power generation systems
  • 2023
  • Ingår i: Applied Energy. - 1872-9118 .- 0306-2619. ; 352
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid oxide fuel cells (SOFCs) are recognized as an alternative for power generation applications due to their high efficiency and environment-friendly behaviour. The electronic devices and power age could be revolutionized with the commercialization of such devices. Stationary power generation systems based on SOFCs are a step closer to commercialization due to the latest developments in the technology that promises to overcome the inherent bottleneck of high-temperature fuel cells, i.e., durability. According to the US Department of Energy (DOE), the stationary power generation system should have a lifetime of 40,000 h continuous operation. The efficiency of SOFCs is mainly dependent on their components such as anode, cathode, interconnect, and electrolyte. There are numerous factors affecting the efficiency of SOFCs that include the composition of the fuel, kinetics, and thermodynamics of the cell, and working temperature. In this paper, we have presented a comprehensive review of the recent developments to produce durable SOFCs for commercial stationary power generation systems. The review summarizes several prominent degradation mechanisms involved in the SOFC components and methods to reduce the degradation process. In addition, the methods and techniques adopted for the degradation analysis are fully demonstrated, followed by a detailed durability diagnostic through in-situ and ex-situ durability testing. The review is complemented by a lucid presentation of future research challenges and the knowledge gaps coupled with potential recommendations to fill the gaps. The new engineering designs, the material development and the new knowledge presented in this study could provide useful guidance for the key stakeholders, policymakers and power generation entities to commercially implement the application of durable SOFCs for stationary power generation.
  •  
9.
  • Sarfraz, Amina, et al. (författare)
  • Catalytic Effect of Silicon Carbide on the Composite Anode of Fuel Cells
  • 2021
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 4:7, s. 6436-6444
  • Tidskriftsartikel (refereegranskat)abstract
    • High efficiency, fuel flexibility, and sustainable energy conversion make fuel cells attractive compared to conventional energy systems. The direct ethanol fuel cells have attracted much attention because of the direct utilization of ethanol fuel. Anode materials are required to enhance the catalytic activity of the liquid fuel, which oxidize the fuel at lower operating temperature. Therefore, the catalytic effect using silicon carbide has been investigated in the LiNiO2-delta anode. The material has been characterized, and it is found that SiC shows a cubic structure and LiNiO2-delta exhibits a hexagonal structure, while the LiNiO2-delta-SiC composite exhibits a mixed cubic and hexagonal phase. Scanning electron microscopy depicts that the material is porous. The Fourier transform infrared spectroscopy analysis shows the presence of Si-O-Si, Si-C, C=O, and Si-OH bonding. The LiNiO2-delta-SiC composite (1:0.3) exhibited a maximum electrical conductivity of 1.34 S cm(-1) at 650 degrees C with an electrical band gap of 0.84 eV. The fabricated cell with the LiNiO2-delta-SiC anode exhibits a power density of 0.20 W cm(-2) at 650 degrees C with liquid ethanol fuel. The results show that there is a promising catalytic activity of SiC in the fuel cell anode.
  •  
10.
  • Ullah, Muhammad Kaleem, et al. (författare)
  • Tri-doped ceria (M0.2Ce0.8O2-δ, M= Sm0.1 Ca0.05 Gd0.05) electrolyte for hydrogen and ethanol-based fuel cells
  • 2019
  • Ingår i: Journal of Alloys and Compounds. - : Elsevier BV. - 0925-8388. ; 773, s. 548-554
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent scientific research, an interest has been gained significantly by rare earth metals such as cerium (Ce), samarium (Sm) and gadolinium (Gd) due to their use in fuel cells as electrolyte and catalysts. When used in an electrolyte, these materials lower the fuel cell's operating temperature compared to a conventional electrolyte, for example, yittria-stabilized zirconia (YSZ) which operates at a high temperature (≥800 °C). In this paper, the tri-doped ceria, M0.2Ce0.8O2-δ(M = Sm0.1Ca0.05Gd0.05) electrolyte powders was synthesized using the co-precipitation method at 80 °C. These dopants were used for CeO2with a total molar ratio of 1 M. Dry-pressed powder technique was used to make fuel cell pellets from the powder and placed them in the furnace to sinter at 700 °C for 60 min. Electrical conductivity of such a pellet in air was 1.2 × 10−2S cm−1at 700 °C measured by the ProboStat-NorECs setup. The crystal structure was determined with the help of X-ray diffraction (XRD), which showed that all the dopants were successfully doped in CeO2. Raman spectroscopy and UV-VIS spectroscopy were also carried out to analyse the molecular vibrations and absorbance, respectively. The maximum open-circuit voltages (OCVs) for hydrogen and ethanol fuelled at 550 °C were observed to be 0.89 V and 0.71 V with power densities 314 mW cm−2and 52.8 mW cm−2, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 78
Typ av publikation
tidskriftsartikel (68)
konferensbidrag (4)
forskningsöversikt (3)
annan publikation (2)
bokkapitel (1)
Typ av innehåll
refereegranskat (75)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Raza, Rizwan (30)
Rizwan, Muhammad (15)
Ali, Amjad (11)
Zhu, Bin (10)
Bennett, Derrick A. (10)
Hay, Simon I. (9)
visa fler...
Bensenor, Isabela M. (9)
Feigin, Valery L. (9)
Jonas, Jost B. (9)
Malekzadeh, Reza (9)
Mokdad, Ali H. (9)
Naghavi, Mohsen (9)
Sepanlou, Sadaf G. (9)
Yonemoto, Naohiro (9)
Murray, Christopher ... (9)
Majeed, Azeem (9)
Yano, Yuichiro (9)
Rafique, Asia (9)
Venketasubramanian, ... (9)
Gupta, Rajeev (9)
Fischer, Florian (9)
Hankey, Graeme J. (8)
Sahebkar, Amirhossei ... (8)
Koyanagi, Ai (8)
Alahdab, Fares (8)
Farzadfar, Farshad (8)
Hamidi, Samer (8)
Kasaeian, Amir (8)
Khader, Yousef Saleh (8)
Lorkowski, Stefan (8)
Lotufo, Paulo A. (8)
Mendoza, Walter (8)
Qorbani, Mostafa (8)
Tran, Bach Xuan (8)
Uthman, Olalekan A. (8)
Vos, Theo (8)
Xu, Gelin (8)
Kim, Daniel (8)
Santos, Itamar S. (8)
Shiri, Rahman (8)
Tabares-Seisdedos, R ... (8)
Afzal, Muhammad (8)
Rawaf, Salman (8)
Carvalho, Félix (8)
Miazgowski, Tomasz (8)
Banach, Maciej (8)
Musa, Kamarul Imran (8)
Abd-Allah, Foad (8)
Meretoja, Atte (8)
Fernandes, Eduarda (8)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (21)
Linköpings universitet (18)
Chalmers tekniska högskola (12)
Karolinska Institutet (12)
Uppsala universitet (10)
Stockholms universitet (10)
visa fler...
Högskolan Dalarna (8)
Lunds universitet (7)
Umeå universitet (6)
Luleå tekniska universitet (3)
Karlstads universitet (3)
Blekinge Tekniska Högskola (3)
Göteborgs universitet (2)
Södertörns högskola (2)
Högskolan i Gävle (1)
Högskolan Väst (1)
Mälardalens universitet (1)
Mittuniversitetet (1)
Högskolan i Borås (1)
visa färre...
Språk
Engelska (78)
Forskningsämne (UKÄ/SCB)
Teknik (37)
Naturvetenskap (22)
Medicin och hälsovetenskap (15)
Samhällsvetenskap (9)
Lantbruksvetenskap (2)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy