SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roberts Anita B) "

Sökning: WFRF:(Roberts Anita B)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abbafati, Cristiana, et al. (författare)
  • 2020
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Patterson, Nick, et al. (författare)
  • Large-scale migration into Britain during the Middle to Late Bronze Age
  • 2022
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; , s. 588-594
  • Tidskriftsartikel (refereegranskat)abstract
    • Present-day people from England and Wales harbour more ancestry derived from Early European Farmers (EEF) than people of the Early Bronze Age1. To understand this, we generated genome-wide data from 793 individuals, increasing data from the Middle to Late Bronze and Iron Age in Britain by 12-fold, and Western and Central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of Iron Age people of England and Wales, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and Britain's independent genetic trajectory is also reflected in the rise of the allele conferring lactase persistence to ~50% by this time compared to ~7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.
  •  
3.
  • Wolfraim, Lawrence A, et al. (författare)
  • Loss of Smad3 in acute T-cell lymphoblastic leukemia
  • 2004
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 351:6, s. 552-559
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The receptors for transforming growth factor β (TGF-β) and their signaling intermediates make up an important tumor-suppressor pathway. The role of one of these intermediates - Smad3 - in the pathogenesis of lymphoid neoplasia is unknown. METHODS: We measured Smad3 messenger RNA (mRNA) and protein in leukemia cells obtained at diagnosis from 19 children with acute leukemia, including 10 with T-cell acute lymphoblastic leukemia (ALL), 7 with pre-B-cell ALL, and 2 with acute nonlymphoblastic leukemia (ANLL). All nine exons of the SMAD3 gene (MADH3) were sequenced. Mice in which one or both alleles of Smad3 were inactivated were used to evaluate the role of Smad3 in the response of normal T cells to TGF-β and in the susceptibility to spontaneous leukemogenesis in mice in which both alleles of the tumor suppressor p27Kip1 were deleted. RESULTS: Smad3 protein was absent in T-cell ALL but present in pre-B-cell ALL and ANLL. No mutations were found in the MADH3 gene in T-cell ALL, and Smad3 mRNA was present in T-cell ALL and normal T cells at similar levels. In mice, the loss of one allele for Smad3 impairs the inhibitory effect of TGF-β on the proliferation of normal T cells and works in tandem with the homozygous inactivation of p27Kip1 to promote T-cell leukemogenesis. CONCLUSIONS: Loss of Smad3 protein is a specific feature of pediatric T-cell ALL. A reduction in Smad3 expression and the loss of p27Kip1 work synergistically to promote T-cell leukemogenesis in mice.
  •  
4.
  • Zeisberg, Elisabeth M., et al. (författare)
  • Endothelial-to-mesenchymal transition contributes to cardiac fibrosis
  • 2007
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 13:8, s. 952-961
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-beta 1 (TGF-beta 1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy