SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roberts Roland Professor) "

Sökning: WFRF:(Roberts Roland Professor)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joshi, Niranjan (författare)
  • Bias-adjusted analysis of global natural disaster records and an assessment of seismic hazard in Sweden
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Natural disasters pose significant challenges today and demand efficient allocation of society’s limited resources for disaster risk reduction. This relies on analysis of natural disaster records, which are prone to (reporting) biases that can affect the inferences drawn from their analysis. Data incompleteness is common in earthquake seismology, and, with a starting point in the Gutenberg-Richter law, this thesis studies the power-law behaviour between fatalities and the frequency of global natural disasters recorded by EM-DAT from 1900 to 2020. Analysing, first, the power-law behaviour of global earthquake frequency and magnitude reveals overlapping patterns, and apparent improved reporting completeness over the studied periods, implying any increase in recorded earthquakes is a reporting artefact. Similarly, “frequency-magnitude” analysis of earthquake disasters shows power-law behaviour and an almost-unchanged distribution of fatalities over time, which also implies improved reporting. Similar analysis of hydro-meteorological disasters in EM-DAT shows their substantially increased number with time to be a reporting artefact driven by improved reporting of low-fatality disasters. The increasing gradient of the power-law part of the frequency-magnitude graphs implies that the worst events have become less fatal on average.  Climate-related disaster risk reduction actions have thus been very successful, resulting in a continuous decline in aggregate associated fatalities, to the extent that earthquakes have been the most fatal natural disasters over the last few decades.  Notably, while the earthquake magnitude distribution is dominated by earthquakes in high-seismicity zones, fatalities predominantly occur in low-seismicity intraplate regions. This implies that seismic hazard in Sweden, an intraplate area, may be significant, especially as earthquakes as large as M8 have occurred in its recent deglaciation phase. Hazard analysis based on data from the recently expanded Swedish seismic network clearly unveils significant hazard posed by Post-Glacial faults in the North. This research advances our understanding of natural disaster dynamics, emphasizing the necessity for non-conventional methodologies to analyze historical data. It offers important insights to help form effective disaster risk reduction strategies, particularly in the context of seismic hazard assessment for specific regions like Sweden.
  •  
2.
  • Amini, Samar (författare)
  • Source analysis of multiplet earthquakes (two case studies in Iran)
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Multiplet earthquakes are large earthquakes of similar magnitude which occur close in time in the same limited geographical area. They are not common but they considerably increase the potential hazard in the area in which they occur. This thesis studies source properties and triggering mechanisms of two sets of multiplet events in Iran, which both occurred in unexpected areas, but close to some major active fault systems. The first multiplet is an earthquake doublet (Mw 6.5 and Mw 6.4) which occurred in northwestern Iran and caused more than 300 fatalities and significant injuries. In paper I, a teleseismic body-waveform inversion was used to deduce the slip distribution pattern on the fault plane of the first mainshock. The estimated slip pattern was utilized to calculate the Coulomb stress changes on the second fault plane and on the following aftershocks. Based on this analysis, the ambiguity between the primary and auxiliary fault plane of the second mainshock could be resolved. The second set of events is a triplet (Mw 6.1 - 6.0) that occurred in eastern Iran, close to the Kerman province. In paper II, the rupture propagation patterns of the three mainshocks were analyzed using Empirical Green’s Function (EGF) deconvolution. Two different approaches were used: One, the analysis of the azimuthal variation of the apparent rupture duration based on the width of the observed relative source time functions, and the second, the analysis of along-strike rupture directivity by assessing azimuthal variations of the relative amplitude spectra. The second approach was also used to investigate the rupture directivity of the largest aftershocks in the sequence (Mw 5 - 5.5). A clear tendency for rupture propagation towards the northwest was observed for the sequence, which suggests that the regional stress field has a central role in controlling the rupture propagation direction. In paper III, the slip distribution patterns of the triplet earthquakes were analyzed using teleseismic body-waveform inversion, and the similarities and differences in the rupture processes of the three mainshocks were investigated. Using the Coulomb stress analyses, the stress interactions between the mainshocks were examined, leading to identification of the primary and auxiliary planes. Finally, we suggest that the hazard estimates in complex continental regions such as Iran need to consider the probability of multiplets, which might allow a reduction of the seismic risk associated to the occurrence of further large earthquakes subsequent to a devastating earthquake.
  •  
3.
  • Lindman, Mattias, 1973- (författare)
  • Physics of Aftershocks in the South Iceland Seismic Zone : Insights into the earthquake process from statistics and numerical modelling of aftershock sequences
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In seismology, an important goal is to attain a better understanding of the earthquake process. In this study of the physics of aftershock generation, I couple statistical analysis with modelling of physical processes in the postseismic period. I present a theoretical formulation for the distribution of interevent times for aftershock sequences obeying the empirically well established Omori law. As opposed to claims by other authors, this work demonstrates that the duration of the time interval between two successive earthquakes cannot be used to identify whether or not they belong to the same aftershock sequence or occur as a result of the same underlying process. This implies that a proper understanding of earthquake interevent time distributions is necessary before conclusions regarding the physics of the earthquake process are drawn.In a discussion of self-organised criticality (SOC) in relation to empirical laws in seismology, I find that Omori's law for aftershocks cannot be used as evidence for the theory of SOC. Instead, I consider that the occurrence of aftershocks in accordance with Omori's law is a result of a physical process that can be modelled and understood.I analyse characteristic features in the spatiotemporal distribution of aftershocks in the south Iceland seismic zone, following the two M6.5 June 2000 earthquakes and a M4.5 earthquake in September, 1999. These features include an initially constant aftershock rate, whose duration is larger following a larger main shock, and a subsequent power law decay that is interrupted by distinct and temporary deviations in terms of rate increases and decreases. Based on pore pressure diffusion modelling, I interpret these features in terms of main shock initiated diffusion processes. I conclude that thorough data analysis and physics-based modelling are essential components in attempts to improve our understanding of processes governing the occurrence of earthquakes.
  •  
4.
  • Fälth, Billy, 1968- (författare)
  • Simulating Earthquake Rupture and Near-Fault Fracture Response
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sweden is presently a low seismicity area where most earthquakes are small and pose no serious threat to constructions. For the long-term perspectives of safety assessments of geological repositories for spent nuclear fuel, however, the effects of large earthquakes have to be considered. For the Swedish nuclear waste storage concept, seismically induced secondary fracture shear displacements across waste canister positions could pose a long-term seismic risk to the repository.In this thesis, I present earthquake simulations with which I study the potential for near-fault secondary fracture shear displacements. As a measure I use the Coulomb Failure Stress (CFS), but also calculate explicit fracture displacements. I account for both the dynamic and quasi-static stress perturbations generated during the earthquake. As numerical tool I use the 3DEC code, whose performance I validate using Stokes closed-form solution and the Compsyn code as benchmarks. In a model of a Mw 6.4 earthquake, I investigate how fault roughness, the fault rupture propagation model and rupture velocity may impact the near-fault CFS evolution. I find that fault roughness can reduce the amount of fault slip by tens of percent, but also increase the near-fault CFS with similar amounts locally. Furthermore, different fault rupture models generate similar CFS levels. I also find that the secondary stresses scale with rupture velocity.In a model based on data from the Forsmark nuclear waste repository site, and assuming stress conditions prevailing at the end of a glaciation, I simulate several high stress drop ~Mw 5.6 earthquake scenarios on the gently dipping fault zone ZFMA2 and calculate secondary fracture displacements on 300 m diameter planar fractures. Less than 1% of the fractures at the shortest distance from ZFMA2 generate displacements exceeding the 50 mm criterion established by the Swedish Nuclear Fuel and Waste Management Co. Given the high stress drops and the assumption of fracture planarity, I consider the calculated displacements to represent upper bound estimates of possible secondary displacements at Forsmark. Hence, the results should strengthen the confidence in the safety assessment of the nuclear waste repository at the Forsmark site.
  •  
5.
  • Hobé, Alex, 1983- (författare)
  • Investigating Time-Varying Processes Using Seismicity and Time-Dependent Tomography
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Our global society is affected by, and makes use of, many time-varying processes. Processes related to geothermal energy and CO2 sequestration can help mitigate climate change and reduce the number of premature deaths (millions annually) due to air pollution from fossil fuels. Processes related to volcanic hazards instead endanger lives and infrastructure in the form of e.g. eruptions, earthquakes, and toxic gases. The related time-varying processes have changing signatures, with specific starting and ending points, and associated time frames, and are investigated in this dissertation using seismicity and time-dependent tomography (TDT).TDT has been used to, e.g., investigate pre-, syn, and post-eruptive periods in volcanic settings, as well as the stimulation of an enhanced geothermal system. One cannot, however, simply produce results for individual epochs and interpret them. We show how artificial differences between results can arise for such individual inversions, as well as for a joint inversion of asynchronous data, and when using constraints (e.g. inter-model minimization). A pragmatic method is presented to identify whether the differences between results go beyond these artificial differences.The time-varying processes under investigation relate to the Reykjanes Peninsula, Iceland, which hosts multiple geothermal power plants, and was the location of several striking signals: Multi-year deformation in a volcanic system, followed by 15 months of volcanotectonic unrest, leading to the first eruption on the peninsula in ~780 years.We show that the multi-year deformation signal is related to a super-critical reservoir that could feed a new geothermal power plant, and identify 14 seismic swarms that cascade along the boundary deformation zone during movements along this zone. We also present the first ever tomographic image of a deep magma reservoir below the Reykjanes Peninsula and follow a propagating dike from the moment it ruptured this reservoir's roof until its arrest, which was followed by a second rupture that lead to the March 2021 eruption in Fagradalsfjall.We explain three possible mechanisms that can lead to both vertical arrest and lateral deflection of a propagating dike. These mechanisms benefit from contacts between mechanically dissimilar layers. Ample evidence for such contacts is found in the field, in deep wells, in a previous study, and in our tomographic images.Lastly, we show how the deepening of the seismicity within the magma reservoir during the eruption connects with how the lava samples obtained at the surface evolved from depleted to enriched with time.
  •  
6.
  • Li, Ka Lok (författare)
  • Location and Relocation of Seismic Sources
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This dissertation is a comprehensive summary of four papers on the development and application of new strategies for locating tremor and relocating events in earthquake catalogs.In the first paper, two new strategies for relocating events in a catalog are introduced. The seismicity pattern of an earthquake catalog is often used to delineate seismically active faults. However, the delineation is often hindered by the diffuseness of earthquake locations in the catalog. To reduce the diffuseness and simplify the seismicity pattern, a relocation and a collapsing method are developed and applied. The relocation method uses the catalog event density as an a priori constraint for relocations in a Bayesian inversion. The catalog event density is expressed in terms of the combined probability distribution of all events in the catalog. The collapsing method uses the same catalog density as an attractor for focusing the seismicity in an iterative scheme. These two strategies are applied to an aftershock sequence after a pair of earthquakes which occurred in southwest Iceland, 2008. The seismicity pattern is simplified by application of the methods and the faults of the mainshocks are delineated by the reworked catalog.In the second paper, the spatial distribution of seismicity of the Hengill region, southwest Iceland is analyzed. The relocation and collapsing methods developed in the first paper and a non-linear relocation strategy using empirical traveltime tables are used to process a catalog collected by the Icelandic Meteorological Office. The reworked catalog reproduces details of the spatial distribution of seismicity that independently emerges from relative relocations of a small subset of the catalog events. The processed catalog is then used to estimate the depth to the brittle-ductile transition. The estimates show that in general the northern part of the area, dominated by volcanic processes, has a shallower depth than the southern part, where tectonic deformation predominates.In the third and the fourth papers, two back-projection methods using inter-station cross correlations are proposed for locating tremor sources. For the first method, double correlations, defined as the cross correlations of correlations from two station pairs sharing a common reference station, are back projected. For the second method, the products of correlation envelopes from a group of stations sharing a common reference station are back projected. Back projecting these combinations of correlations, instead of single correlations, suppresses random noise and reduces the strong geometrical signature caused by the station configuration. These two methods are tested with volcanic tremor at Katla volcano, Iceland. The inferred source locations agree with surface observations related to volcanic events which occurred during the tremor period.
  •  
7.
  • Olsson, Sverker, 1967- (författare)
  • Analyses of Seismic Wave Conversion in the Crust and Upper Mantle beneath the Baltic Shield
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Teleseismic data recorded by broad-band seismic stations in the Swedish National Seismic Network (SNSN) have been used in a suite of studies of seismic wave conversion in order to assess the structure of the crust and upper mantle beneath the Baltic Shield. Signals of seismic waves converted between P and S at seismic discontinuities within the Earth carry information on the velocity contrast at the converting interface, on the depth of conversion and on P and S velocities above this depth.The conversion from P to S at the crust-mantle boundary (the Moho) provides a robust tool to constrain crustal thicknesses. Results of such analysis for the Baltic Shield show considerable variation of Moho depths and significantly improve the Moho depth map. Analysis of waves converted from S to P in the upper mantle reveals a layered lithosphere with alternating high and low velocity bodies. It also detects clear signals of a sharp velocity contrast at the lithosphere-asthenosphere boundary at depths around 200 km.Delay times of P410s, the conversion from P to S at the upper mantle discontinuity at 410 km depth, were used in a tomographic inversion to simultaneously determine P and S velocities in the upper mantle. The polarisation of P410s was also used to study anisotropy of the upper mantle. Results of these analyses are found to be in close agreement with independently derived results from arrival time tomography and shear-wave splitting analysis of SKS.The results presented in this thesis demonstrate the ability of converted wave analysis as a tool to detect and image geological boundaries that involve sharp contrasts in seismic properties. The results also show that this analysis can provide means of studying aspects of Earth’s structure that are conventionally studied using other types of seismic data.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy