SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Robin Angelique) "

Search: WFRF:(Robin Angelique)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Andrikopoulos, Petros, et al. (author)
  • Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide
  • 2023
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk.
  •  
2.
  • Forslund, Sofia K., et al. (author)
  • Combinatorial, additive and dose-dependent drug–microbiome associations
  • 2021
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7889, s. 500-505
  • Journal article (peer-reviewed)abstract
    • During the transition from a healthy state to cardiometabolic disease, patients become heavily medicated, which leads to an increasingly aberrant gut microbiome and serum metabolome, and complicates biomarker discovery1–5. Here, through integrated multi-omics analyses of 2,173 European residents from the MetaCardis cohort, we show that the explanatory power of drugs for the variability in both host and gut microbiome features exceeds that of disease. We quantify inferred effects of single medications, their combinations as well as additive effects, and show that the latter shift the metabolome and microbiome towards a healthier state, exemplified in synergistic reduction in serum atherogenic lipoproteins by statins combined with aspirin, or enrichment of intestinal Roseburia by diuretic agents combined with beta-blockers. Several antibiotics exhibit a quantitative relationship between the number of courses prescribed and progression towards a microbiome state that is associated with the severity of cardiometabolic disease. We also report a relationship between cardiometabolic drug dosage, improvement in clinical markers and microbiome composition, supporting direct drug effects. Taken together, our computational framework and resulting resources enable the disentanglement of the effects of drugs and disease on host and microbiome features in multimedicated individuals. Furthermore, the robust signatures identified using our framework provide new hypotheses for drug–host–microbiome interactions in cardiometabolic disease.
  •  
3.
  • Galluzzi, Lorenzo, et al. (author)
  • Prognostic Impact of Vitamin B6 Metabolism in Lung Cancer
  • 2012
  • In: Cell Reports. - Cambridge : Cell press. - 2211-1247. ; 2:2, s. 257-269
  • Journal article (peer-reviewed)abstract
    • Patients with non-small cell lung cancer (NSCLC) are routinely treated with cytotoxic agents such as cisplatin. Through a genome-wide siRNA-based screen, we identified vitamin B6 metabolism as a central regulator of cisplatin responses in vitro and in vivo. By aggravating a bioenergetic catastrophe that involves the depletion of intracellular glutathione, vitamin B6 exacerbates cisplatin-mediated DNA damage, thus sensitizing a large panel of cancer cell lines to apoptosis. Moreover, vitamin B6 sensitizes cancer cells to apoptosis induction by distinct types of physical and chemical stress, including multiple chemotherapeutics. This effect requires pyridoxal kinase (PDXK), the enzyme that generates the bioactive form of vitamin B6. In line with a general role of vitamin B6 in stress responses, low PDXK expression levels were found to be associated with poor disease outcome in two independent cohorts of patients with NSCLC. These results indicate that PDXK expression levels constitute a biomarker for risk stratification among patients with NSCLC.
  •  
4.
  • Michels, Judith, et al. (author)
  • Cisplatin Resistance Associated with PARP Hyperactivation
  • 2013
  • In: Cancer Research. - Philadelphia : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 73:7, s. 2271-2280
  • Journal article (peer-reviewed)abstract
    • Non-small cell lung carcinoma patients are frequently treated with cisplatin (CDDP), most often yielding temporary clinical responses. Here, we show that PARP1 is highly expressed and constitutively hyperactivated in a majority of human CDDP-resistant cancer cells of distinct histologic origin. Cells manifesting elevated intracellular levels of poly(ADP-ribosyl)ated proteins (PAR(high)) responded to pharmacologic PARP inhibitors as well as to PARP1-targeting siRNAs by initiating a DNA damage response that translated into cell death following the activation of the intrinsic pathway of apoptosis. Moreover, PARP1-overexpressing tumor cells and xenografts displayed elevated levels of PAR, which predicted the response to PARP inhibitors in vitro and in vivo more accurately than PARP1 expression itself. Thus, a majority of CDDP-resistant cancer cells appear to develop a dependency to PARP1, becoming susceptible to PARP inhibitor-induced apoptosis. Cancer Res; 73(7); 2271-80.
  •  
5.
  • Molinaro, Antonio, et al. (author)
  • Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism.
  •  
6.
  • 2019
  • Journal article (peer-reviewed)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6
Type of publication
journal article (6)
Type of content
peer-reviewed (6)
Author/Editor
Coelho, Luis P. (4)
Nielsen, Jens B, 196 ... (3)
Bäckhed, Fredrik, 19 ... (3)
Collet, Jean-Philipp ... (3)
Hansen, Torben (3)
Montalescot, Gilles (3)
show more...
Clement, K (3)
Vestergaard, H. (3)
Bork, Peer (3)
Køber, Lars (3)
Forslund, Sofia K. (3)
Nielsen, Trine (3)
Adriouch, Solia (3)
Chilloux, J. (3)
Vieira-Silva, Sara (3)
Falony, Gwen (3)
Salem, Joe-Elie (3)
Andreelli, Fabrizio (3)
Belda, Eugeni (3)
Le Chatelier, Emmanu ... (3)
Alves, Renato (3)
Helft, Gerard (3)
Isnard, Richard (3)
Rouault, Christine (3)
Gøtze, Jens P. (3)
Prifti, Edi (3)
Barthelemy, Olivier (3)
Bastard, Jean-Philli ... (3)
Batisse, Jean-Paul (3)
Berland, Magalie (3)
Bittar, Randa (3)
Blottière, Hervé (3)
Bosquet, Frederic (3)
Boubrit, Rachid (3)
Bourron, Olivier (3)
Camus, Mickael (3)
Ciangura, Cecile (3)
Djebbar, Morad (3)
Doré, Angélique (3)
Engelbrechtsen, Line (3)
Fezeu, Leopold (3)
Fromentin, Sebastien (3)
Pons, Nicolas (3)
Hartemann, Agnes (3)
Hornbak, Malene (3)
Jaqueminet, Sophie (3)
Jørgensen, Niklas Ry ... (3)
Julienne, Hanna (3)
Justesen, Johanne (3)
Kammer, Judith (3)
show less...
University
University of Gothenburg (4)
Chalmers University of Technology (4)
Umeå University (2)
Uppsala University (1)
Halmstad University (1)
Stockholm University (1)
show more...
Lund University (1)
Karolinska Institutet (1)
show less...
Language
English (6)
Research subject (UKÄ/SCB)
Medical and Health Sciences (5)
Natural sciences (2)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view