SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rochon C) "

Sökning: WFRF:(Rochon C)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Brady, MC, et al. (författare)
  • Precision rehabilitation for aphasia by patient age, sex, aphasia severity, and time since stroke? A prespecified, systematic review-based, individual participant data, network, subgroup meta-analysis
  • 2022
  • Ingår i: International journal of stroke : official journal of the International Stroke Society. - : SAGE Publications. - 1747-4949. ; 17:10, s. 1067-1077
  • Tidskriftsartikel (refereegranskat)abstract
    • Stroke rehabilitation interventions are routinely personalized to address individuals’ needs, goals, and challenges based on evidence from aggregated randomized controlled trials (RCT) data and meta-syntheses. Individual participant data (IPD) meta-analyses may better inform the development of precision rehabilitation approaches, quantifying treatment responses while adjusting for confounders and reducing ecological bias. Aim: We explored associations between speech and language therapy (SLT) interventions frequency (days/week), intensity (h/week), and dosage (total SLT-hours) and language outcomes for different age, sex, aphasia severity, and chronicity subgroups by undertaking prespecified subgroup network meta-analyses of the RELEASE database. Methods: MEDLINE, EMBASE, and trial registrations were systematically searched (inception-Sept2015) for RCTs, including ⩾ 10 IPD on stroke-related aphasia. We extracted demographic, stroke, aphasia, SLT, and risk of bias data. Overall-language ability, auditory comprehension, and functional communication outcomes were standardized. A one-stage, random effects, network meta-analysis approach filtered IPD into a single optimal model, examining SLT regimen and language recovery from baseline to first post-intervention follow-up, adjusting for covariates identified a-priori. Data were dichotomized by age (⩽/> 65 years), aphasia severity (mild–moderate/ moderate–severe based on language outcomes’ median value), chronicity (⩽/> 3 months), and sex subgroups. We reported estimates of means and 95% confidence intervals. Where relative variance was high (> 50%), results were reported for completeness. Results: 959 IPD (25 RCTs) were analyzed. For working-age participants, greatest language gains from baseline occurred alongside moderate to high-intensity SLT (functional communication 3-to-4 h/week; overall-language and comprehension > 9 h/week); older participants’ greatest gains occurred alongside low-intensity SLT (⩽ 2 h/week) except for auditory comprehension (> 9 h/week). For both age-groups, SLT-frequency and dosage associated with best language gains were similar. Participants ⩽ 3 months post-onset demonstrated greatest overall-language gains for SLT at low intensity/moderate dosage (⩽ 2 SLT-h/week; 20-to-50 h); for those > 3 months, post-stroke greatest gains were associated with moderate-intensity/high-dosage SLT (3–4 SLT-h/week; ⩾ 50 hours). For moderate–severe participants, 4 SLT-days/week conferred the greatest language gains across outcomes, with auditory comprehension gains only observed for ⩾ 4 SLT-days/week; mild–moderate participants’ greatest functional communication gains were associated with similar frequency (⩾ 4 SLT-days/week) and greatest overall-language gains with higher frequency SLT (⩾ 6 days/weekly). Males’ greatest gains were associated with SLT of moderate (functional communication; 3-to-4 h/weekly) or high intensity (overall-language and auditory comprehension; (> 9 h/weekly) compared to females for whom the greatest gains were associated with lower-intensity SLT (< 2 SLT-h/weekly). Consistencies across subgroups were also evident; greatest overall-language gains were associated with 20-to-50 SLT-h in total; auditory comprehension gains were generally observed when SLT > 9 h over ⩾ 4 days/week. Conclusions: We observed a treatment response in most subgroups’ overall-language, auditory comprehension, and functional communication language gains. For some, the maximum treatment response varied in association with different SLT-frequency, intensity, and dosage. Where differences were observed, working-aged, chronic, mild–moderate, and male subgroups experienced their greatest language gains alongside high-frequency/intensity SLT. In contrast, older, moderate–severely impaired, and female subgroups within 3 months of aphasia onset made their greatest gains for lower-intensity SLT. The acceptability, clinical, and cost effectiveness of precision aphasia rehabilitation approaches based on age, sex, aphasia severity, and chronicity should be evaluated in future clinical RCTs.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Sioris, C. E., et al. (författare)
  • The atmospheric limb sounding satellite (ALISS)
  • 2014
  • Ingår i: Proceedings of the International Astronautical Congress, IAC. - 0074-1795. - 9781634399869 ; 4, s. 2382-2392
  • Konferensbidrag (refereegranskat)abstract
    • The Atmospheric Limb Sounding Satellite (ALISS) is a joint Canadian-Swedish concept that is currently under study by agencies, industrial partners and academic institutions in both countries. Launch is not anticipated before late 2020. ALISS has significant heritage, resembling the current Odin mission in terms of some of the countries involved and the types of instruments. However, ALISS will have a focus on the upper troposphere in addition to Odin's primarily stratospheric focus. The ALISS mission has objectives relating to climate-chemistry coupling, UV radiation, dynamics, atmospheric composition in the upper troposphere and lower stratosphere, and in conjunction with nadir sensors, air quality, by virtue of the array of key atmospheric constituents that it will measure with an unprecedented combination of vertical and horizontal resolution for satellite-borne instruments. ALISS consists of four atmospheric limb remote sensing instruments. Three of these have space heritage and are: the Canadian-designed Atmospheric Tomography System (CATS) that is a derivative of the highly successful Optical Spectrograph and InfraRed Imaging System (OSIRIS) instrument, the Swedish-designed Stratosphere Troposphere Exchange And climate Monitoring Radiometer (STEAMR) that is a follow-on instrument to the sub-millimetre radiometer (SMR) that currently operates with OSIRIS on Odin, and a Global Positioning System Radio Occultation instrument. The fourth instrument, also Canadian, is the Spatial Heterodyne Observations of Water (SHOW). SHOW will measure profiles of water vapour using its near-infrared absorption. Among other things, the ALISS package will deliver atmospheric composition (O3, H2O, NO2, HNO3, BrO, CO, aerosol, and others) measurements within the extremely important upper troposphere and lower stratosphere region for chemistry and climate studies. One application of interest would be using these measurements in conjunction with total column measurements from nadir-viewing instruments as well as data assimilation systems in order to better monitor and forecast air quality. Also, the heritage of these instruments implies the ALISS measurements will be extremely valuable in the continuation of climate-quality time series of important constituents such as stratospheric aerosols, water vapour, and ozone. Continuity of these vertically resolved data records is currently threatened by a looming gap in satellite-based limb sounders. This talk will outline the ALISS concept and the utility of the measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy