SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodermel Steven) "

Sökning: WFRF:(Rodermel Steven)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, Zach, et al. (författare)
  • Chloroplast and mitochondrial proteases in Arabidopsis : a proposed nomenclature
  • 2001
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 125:4, s. 1912-1918
  • Tidskriftsartikel (refereegranskat)abstract
    • The identity and scope of chloroplast and mitochondrial proteases in higher plants has only started to become apparent in recent years. Biochemical and molecular studies suggested the existence of Clp, FtsH, and DegP proteases in chloroplasts, and a Lon protease in mitochondria, although currently the full extent of their role in organellar biogenesis and function remains poorly understood. Rapidly accumulating DNA sequence data, especially from Arabidopsis, has revealed that these proteolytic enzymes are found in plant cells in multiple isomeric forms. As a consequence, a systematic approach was taken to catalog all these isomers, to predict their intracellular location and putative processing sites, and to propose a standard nomenclature to avoid confusion and facilitate scientific communication. For the Clp protease most of the ClpP isomers are found in chloroplasts, whereas one is mitochondrial. Of the ATPase subunits, the one ClpD and two ClpC isomers are located in chloroplasts, whereas both ClpX isomers are present in mitochondria. Isomers of the Lon protease are predicted in both compartments, as are the different forms of FtsH protease. DegP, the least characterized protease in plant cells, has the most number of isomers and they are predicted to localize in several cell compartments. These predictions, along with the proposed nomenclature, will serve as a framework for future studies of all four families of proteases and their individual isomers.
  •  
2.
  • Rosso, Dominic, et al. (författare)
  • IMMUTANS does not act as a stress-induced safety valve in the protection of the photosynthetic apparatus of Arabidopsis during steady-state photosynthesis.
  • 2006
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 142:2, s. 574-85
  • Tidskriftsartikel (refereegranskat)abstract
    • IMMUTANS (IM) encodes a thylakoid membrane protein that has been hypothesized to act as a terminal oxidase that couples the reduction of O2 to the oxidation of the plastoquinone (PQ) pool of the photosynthetic electron transport chain. Because IM shares sequence similarity to the stress-induced mitochondrial alternative oxidase (AOX), it has been suggested that the protein encoded by IM acts as a safety valve during the generation of excess photosynthetically generated electrons. We combined in vivo chlorophyll fluorescence quenching analyses with measurements of the redox state of P700 to assess the capacity of IM to compete with photosystem I for intersystem electrons during steady-state photosynthesis in Arabidopsis (Arabidopsis thaliana). Comparisons were made between wild-type plants, im mutant plants, as well as transgenics in which IM protein levels had been overexpressed six (OE-6x) and 16 (OE-16x) times. Immunoblots indicated that IM abundance was the only major variant that we could detect between these genotypes. Overexpression of IM did not result in increased capacity to keep the PQ pool oxidized compared to either the wild type or im grown under control conditions (25°C and photosynthetic photon flux density of 150 µmol photons m–2 s–1). Similar results were observed either after 3-d cold stress at 5°C or after full-leaf expansion at 5°C and photosynthetic photon flux density of 150 µmol photons m–2 s–1. Furthermore, IM abundance did not enhance protection of either photosystem II or photosystem I from photoinhibition at either 25°C or 5°C. Our in vivo data indicate that modulation of IM expression and polypeptide accumulation does not alter the flux of intersystem electrons to P700+ during steady-state photosynthesis and does not provide any significant photoprotection. In contrast to AOX1a, meta-analyses of published Arabidopsis microarray data indicated that IM expression exhibited minimal modulation in response to myriad abiotic stresses, which is consistent with our functional data. However, IM exhibited significant modulation in response to development in concert with changes in AOX1a expression. Thus, neither our functional analyses of the IM knockout and overexpression lines nor meta-analyses of gene expression support the model that IM acts as a safety valve to regulate the redox state of the PQ pool during stress and acclimation. Rather, IM appears to be strongly regulated by developmental stage of Arabidopsis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy