SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodil Iván F.) "

Sökning: WFRF:(Rodil Iván F.)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sampaio, E., et al. (författare)
  • Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients
  • 2017
  • Ingår i: Marine Environmental Research. - : Elsevier BV. - 0141-1136 .- 1879-0291. ; 125, s. 25-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the past century, rising CO2 levels have led to global changes (ocean warming and acidification) with subsequent effects on marine ecosystems and organisms. Macroalgae-herbivore interactions have a main role in the regulation of marine community structure (top-down control). Gradients of warming prompt complex non-linear effects on organism metabolism, cascading into altered trophic interactions and community dynamics. However, not much is known on how will acidification and grazer assemblage composition shape these effects. Within this context, we aimed to assess the combined effects of warming gradients and acidification on macroalgae-herbivore interactions, using three cosmopolitan species, abundant in the Iberian Peninsula and closely associated in nature: the amphipod Melita palmata, the gastropod Gibbula umbilicalis, and the green macroalga Ulva rigida. Under two CO2 treatments (triangle CO2 similar or equal to 450 mu atm) across a temperature gradient (13.5, 16.6, 19.9 and 22.1 degrees C), two mesocosm experiments were performed to assess grazer consumption rates and macroalgae-herbivore interaction, respectively. Warming (Experiment I and II) and acidification (Experiment II) prompted negative effects in grazer's survival and species-specific differences in consumption rates. M. palmata was shown to be the stronger grazer per biomass (but not per capita), and also the most affected by climate stressors. Macroalgae-herbivore interaction strength was markedly shaped by the temperature gradient, while simultaneous acidification lowered thermal optimal threshold. In the near future, warming and acidification are likely to strengthen top-down control, but further increases in disturbances may lead to bottom-up regulated communities. Finally, our results suggest that grazer assemblage composition may modulate future macroalgae-herbivore interactions.
  •  
2.
  • Lohrer, Andrew M., et al. (författare)
  • Influence of New Zealand cockles (Austrovenus stutchburyi) on primary productivity in sandflat-seagrass (Zostera muelleri) ecotones
  • 2016
  • Ingår i: Estuarine, Coastal and Shelf Science. - : Elsevier BV. - 0272-7714 .- 1096-0015. ; 181, s. 238-248
  • Tidskriftsartikel (refereegranskat)abstract
    • New Zealand cockles (Austrovenus stutchburyi) are ecologically important, intertidal bivalves that have been shown to influence nutrient cycles and the productivity of microphytobenthos on sandflats. Here, we investigated the potential for cockles to impact the productivity of seagrass, Zostera muelleri, and examined interactions between these habitat-defining species where they co-occur. We sampled bivalve densities and sizes, sediment properties, and seagrass shoot densities across the boundaries of two seagrass patches on an intertidal sandflat in northern New Zealand, and measured dissolved oxygen and nutrient fluxes in light and dark benthic incubation chambers in conjunction with a 0-97% gradient in seagrass cover. Although gross primary production (GPP, mu mol O-2 m(-2) h(-1)) increased predictably with the cover of live seagrass, the density of cockles and sediment properties also contributed directly and indirectly. Seagrass cover was positively correlated with cockle density (ranging from 225 to 1350 individuals per m(2)), sediment mud percentage (0.5-9.5%), and organic matter content (0.5-2.2%), all of which can affect the efflux of ammonium (readily utilisable inorganic nitrogen) from sediments. Moreover, the cover of green seagrass blades plateaued (never exceeded 70%) in the areas of highest total seagrass cover, adding complexity to cockle-seagrass interactions and contributing to a unimodal cockleGPP relationship.
  •  
3.
  • Rodil, Iván F., et al. (författare)
  • Macrofauna communities across a seascape of seagrass meadows : environmental drivers, biodiversity patterns and conservation implications
  • 2021
  • Ingår i: Biodiversity and Conservation. - : Springer Science and Business Media LLC. - 0960-3115 .- 1572-9710. ; :30, s. 3023-3043
  • Tidskriftsartikel (refereegranskat)abstract
    • Similar to other coastal biogenic habitats (e.g. tidal marshes, kelp forests, mangroves and coral reefs), a key function of seagrass meadows is the enhancement of biodiversity. Variability at multiple spatial scales is a driver of biodiversity, but our understanding of the response of macrofauna communities to variability of seagrass meadows is limited. We examined the macrofauna community structure (abundance and biomass) and diversity patterns (α- and β-diversity) across a seascape gradient of eleven seagrass meadows differing in the number, composition and density of plant species. The variability of the macrobenthic communities was regulated by a combination of sedimentary (mainly for the infauna) and macrophyte (mainly for the epifauna) predictors. We demonstrate that the natural occurrence of drifting algae trapped in the aboveground complexity of the meadows benefits seagrass macrofauna. Seagrass-associated macrofauna showed a clear increase in abundance and α-diversity metrics with increasing habitat complexity attributes (i.e. shoot density, plant biomass and canopy height). Furthermore, partitioning of β-diversity (i.e. the variation of species composition between sites) implied the replacement of some species by others between sites (i.e. spatial turnover) instead of a process of species loss (or gain) from site to site (i.e. nestedness). Therefore, the enhancement of macrofauna diversity across an increasing gradient of seagrass complexity, and the dominance of the turnover component suggest that devoting conservation efforts on many different types of meadows, including the less diverse, should be a priority for coastal habitat-management.
  •  
4.
  • Rodil, Iván F., et al. (författare)
  • Positive contribution of macrofaunal biodiversity to secondary production and seagrass carbon metabolism
  • 2022
  • Ingår i: Ecology. - : Wiley. - 0012-9658 .- 1939-9170. ; 103:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal vegetated habitats such as seagrasses are known to play a critical role in carbon cycling and the potential to mitigate climate change, as blue carbon habitats have been repeatedly highlighted. However, little information is known about the role of associated macrofauna communities on the dynamics of critical processes of seagrass carbon metabolism (e.g., respiration, turnover, and production). We conducted a field study across a spatial gradient of seagrass meadows involving variable environmental conditions and macrobenthic diversity to investigate (1) the relationship between macrofauna biodiversity and secondary production (i.e., consumer incorporation of organic matter per time unit), and (2) the role of macrofauna communities in seagrass organic carbon metabolism (i.e., respiration and primary production). We show that, although several environmental factors influence secondary production, macrofauna biodiversity controls the range of local seagrass secondary production. We demonstrate that macrofauna respiration rates were responsible for almost 40% of the overall seafloor community respiration. Macrofauna represented on average >25% of the total benthic organic C stocks, high secondary production that is likely to become available to upper trophic levels of the coastal food web. Our findings support the role of macrofauna biodiversity in maintaining productive ecosystems, implying that biodiversity loss due to ongoing environmental change yields less productive seagrass ecosystems. Therefore, the assessment of carbon dynamics in coastal habitats should include associated macrofauna biodiversity elements if we aim to obtain robust estimates of global carbon budgets required to implement management actions for the sustainable functioning of the world's coasts.
  •  
5.
  • Attard, Karl M., et al. (författare)
  • Metabolism of a subtidal rocky mussel reef in a high-temperate setting : pathways of organic C flow
  • 2020
  • Ingår i: Marine Ecology Progress Series. - : Inter-Research Science Center. - 0171-8630 .- 1616-1599. ; 645, s. 41-54
  • Tidskriftsartikel (refereegranskat)abstract
    • Mytilid mussels form abundant, species-rich reefs on rocky substrates, but the role of this key habitat in carbon (C) cycling remains poorly understood. We performed a seasonal study on a 5 m deep photic Mytilus trossulus reef in the Central Baltic Sea to investigate pathways and rates of organic C flow. Reef gross primary production (GPP) and respiration (R) were estimated seasonally using underwater O2 eddy covariance on hourly and daily timescales. Photogrammetry and biotic sampling were used to quantify reef rugosity and mussel coverage, and to derive mussel filtration and biodeposition. Mussels were highly abundant, reaching ~50000 ind. m-2, and the reef structure increased the seabed surface area by 44%. GPPhourly was up to 20 mmol O2 m-2 h-1 and GPPdaily was up to 107 mmol O2 m-2 d-1, comparable to a nearby seagrass canopy. Hourly eddy fluxes responded linearly to light intensity and flow velocity, with higher velocities enhancing reef O2 uptake at night. Reef Rdaily exceeded GPPdaily on 12 of 13 measurement days, and Rannual (29 mol O2 m-2 yr-1) was 3-fold larger than GPPannual. The reef sustained a productive community of microbes and fauna whose activities accounted for ~50% of Rannual. Horizontal water advection promoted food supply to the reef and likely facilitated substantial lateral C export of mussel biodeposits. Our analyses suggest that a reduction in mussel reef extent due to ongoing environmental change will have major implications for the transport and transformation of C and nutrients within the coastal Baltic Sea.
  •  
6.
  • Attard, Karl M., et al. (författare)
  • Seasonal ecosystem metabolism across shallow benthic habitats measured by aquatic eddy covariance
  • 2019
  • Ingår i: Limnology and Oceanography Letters. - : Wiley. - 2378-2242. ; 4:3, s. 79-86
  • Tidskriftsartikel (refereegranskat)abstract
    • Shallow benthic habitats are hotspots for carbon cycling and energy flow, but metabolism (primary production and respiration) dynamics and habitat-specific differences remain poorly understood. We investigated daily, seasonal, and annual metabolism in six key benthic habitats in the Baltic Sea using similar to 2900h of in situ aquatic eddy covariance oxygen flux measurements. Rocky substrates had the highest metabolism rates. Habitat-specific annual primary production per m(2) was in the order Fucus vesiculosus canopy>Mytilus trossulus reef>Zostera marina canopy>mixed macrophytes canopy>sands, whereas respiration was in the order M. trossulus>F. vesiculosus>Z. marina>mixed macrophytes> sands>aphotic sediments. Winter metabolism contributed 22-31% of annual rates. Spatial upscaling revealed that benthic habitats drive >90% of ecosystem metabolism in waters <= 5 m depth, highlighting their central role in carbon and nutrient cycling in shallow waters.
  •  
7.
  • Attard, K. M., et al. (författare)
  • Seasonal metabolism and carbon export potential of a key coastal habitat : The perennial canopy-forming macroalga Fucus vesiculosus
  • 2019
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 64:1, s. 149-164
  • Tidskriftsartikel (refereegranskat)abstract
    • The important role of macroalgal canopies in the oceanic carbon (C) cycle is increasingly being recognized, but direct assessments of community productivity remain scarce. We conducted a seasonal study on a sublittoral Baltic Sea canopy of the brown alga Fucus vesiculosus, a prominent species in temperate and Arctic waters. We investigated community production on hourly, daily, and seasonal timescales. Aquatic eddy covariance (AEC) oxygen flux measurements integrated similar to 40 m(2) of the seabed surface area and documented considerable oxygen production by the canopy year-round. High net oxygen production rates of up to 35 +/- 9 mmol m(-2) h(-1) were measured under peak irradiance of similar to 1200 mu mol photosynthetically active radiation (PAR) m(-2) s(-1) in summer. However, high rates > 15 mmol m(-2) h(-1) were also measured in late winter (March) under low light intensities < 250 mu mol PAR m(-2) s(-1) and water temperatures of similar to 1 degrees C. In some cases, hourly AEC fluxes documented an apparent release of oxygen by the canopy under dark conditions, which may be due to gas storage dynamics within internal air spaces of F. vesiculosus. Daily net ecosystem metabolism (NEM) was positive (net autotrophic) in all but one of the five measurement campaigns (December). A simple regression model predicted a net autotrophic canopy for two-thirds of the year, and annual canopy NEM amounted to 25 mol O-2 m(-2) yr(-1), approximately six-fold higher than net phytoplankton production. Canopy C export was similar to 0.3 kg C m(-2) yr(-1), comparable to canopy standing biomass in summer. Macroalgal canopies thus represent regions of intensified C assimilation and export in coastal waters.
  •  
8.
  • Graco-Roza, Caio, et al. (författare)
  • Distance decay 2.0 – A global synthesis of taxonomic and functional turnover in ecological communities
  • 2022
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 31:7, s. 1399-1421
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Understanding the variation in community composition and species abundances (i.e., beta-diversity) is at the heart of community ecology. A common approach to examine beta-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments.Location: Global.Time period: 1990 to present.Major taxa studied: From diatoms to mammals.Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features.Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances.Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.
  •  
9.
  • Kahma, T., et al. (författare)
  • Food-web comparisons between two shallow vegetated habitat types in the Baltic Sea
  • 2021
  • Ingår i: Marine Environmental Research. - : Elsevier BV. - 0141-1136 .- 1879-0291. ; 169
  • Tidskriftsartikel (refereegranskat)abstract
    • Coastal vegetated habitats maintain highly diverse communities, where the contribution of macrophyte production is significant for macroinvertebrate primary consumers. In the brackish-waters of the Baltic Sea, the taxonomical diversity of different macrophytes includes both marine and limnic species. To study the basal food-web differences of two key vegetated habitat types, either dominated by a perennial brown macroalgae (Fucus vesiculosus) or by angiosperm plants, 13C and 15N compositions of different primary producers and macroinvertebrate consumers were examined, and their diets were estimated by Bayesian mixing models. Carbon isotope diversity of primary producers was high especially in the hard-bottom Fucus-dominated habitats, which was also reflected in a larger consumer isotope niche. However, consumer isotope niche among sites was similar within the same habitat type. Our models indicated that the perennial macrophyte dietary median contribution was about 25% for deposit feeders and omnivores in both habitat types, while epigrazers preferred filamentous algae (30–60%). The niche positions of the abundant clams L. balthica, M. arenaria and C. glaucum differed between the two habitats, but they showed only small (<10% units) differences in their macrophyte dietary contributions. The isotopic compositions of the dominating primary producer assemblage reflected significantly in the isotope niche structure of the associated primary consumers.
  •  
10.
  • Kahma, T. I., et al. (författare)
  • Macroalgae fuels coastal soft-sediment macrofauna : A triple-isotope approach across spatial scales
  • 2020
  • Ingår i: Marine Environmental Research. - : Elsevier BV. - 0141-1136 .- 1879-0291. ; 162
  • Tidskriftsartikel (refereegranskat)abstract
    • Shallow coastal zones may provide cross-habitat nutrient subsidies for benthic communities offshore, as macrophyte matter can drift to deeper sediments. To study the relative importance of carbon and nutrient flows derived from different primary food sources in a coastal ecosystem, the diets of clam Macoma balthica, polychaete Marenzelleria spp. and mussel Mytilus trossulus were examined across environmental gradients in the northern Baltic Sea using a triple-isotope approach (i.e. 13C, 15N and 34S) and Bayesian mixing models (MixSIAR). Our results suggest that in shallow habitats, production from Fucus vesiculosus is the primary energy source for M. balthica. The proportion of macroalgae-derived matter in the diet of M. balthica and Marenzelleria spp. decreased following a depth gradient. Our models for M. trossulus indicate that the pelagic POM dominates its diet. Our results indicate a trophic connectivity between shallow macrophyte-dominated and deeper habitats, which receive significant amounts of nutrient subsidies from shallower areas.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy