SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodriguez Espigares Ismael) "

Sökning: WFRF:(Rodriguez Espigares Ismael)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jaiteh, Mariama, et al. (författare)
  • Performance of virtual screening against GPCR homology models : Impact of template selection and treatment of binding site plasticity
  • 2020
  • Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 16:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Author summary Three-dimensional structures of proteins combined with computational methods have become widely used to identify starting-points for drug discovery. However, this powerful approach is limited by the lack of atomic resolution structures for many drug targets. G protein-coupled receptors (GPCRs) belong to the largest family of cell surface receptors and play roles in numerous physiological processes. As GPCRs are important therapeutic targets, there is significant interest in applying structure-based in silico screening to accelerate the drug discovery process. However, GPCRs have been notoriously difficult to crystallize and structures are lacking for >80% of the family. We assessed prediction of GPCR structure based on previously determined crystal structures as templates by using the homology modeling method. We explored strategies to identify models suitable for virtual screening with the molecular docking method and to further refine structures using molecular dynamics simulations. Our calculations revealed that the closest homologue of a target is not necessarily the best template and demonstrated how accurate binding site models with excellent ability to identify ligands can be obtained. The results highlight strengths and weaknesses of structure prediction methods and provide guidelines for successful application of virtual screening to proteins of unknown structure. Rational drug design for G protein-coupled receptors (GPCRs) is limited by the small number of available atomic resolution structures. We assessed the use of homology modeling to predict the structures of two therapeutically relevant GPCRs and strategies to improve the performance of virtual screening against modeled binding sites. Homology models of the D-2 dopamine (D2R) and serotonin 5-HT2A receptors (5-HT2AR) were generated based on crystal structures of 16 different GPCRs. Comparison of the homology models to D2R and 5-HT2AR crystal structures showed that accurate predictions could be obtained, but not necessarily using the most closely related template. Assessment of virtual screening performance was based on molecular docking of ligands and decoys. The results demonstrated that several templates and multiple models based on each of these must be evaluated to identify the optimal binding site structure. Models based on aminergic GPCRs displayed ligand enrichment and there was a trend toward improved virtual screening performance with increasing binding site accuracy. The best models even displayed ligand enrichment better than that of the D2R and 5-HT2AR crystal structures. Methods to consider binding site plasticity were explored to further improve predictions. Molecular docking to ensembles of structures did not outperform the best individual binding site models, but could increase the diversity of hits from virtual screens and be advantageous for GPCR targets with few known ligands. Molecular dynamics refinement resulted in moderate improvements of structural accuracy and the virtual screening performance of snapshots was either comparable to or worse than that of the raw homology models. These results provide guidelines for successful application of structure-based ligand discovery using GPCR homology models.
  •  
2.
  • Kapla, Jon, et al. (författare)
  • Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models?
  • 2021
  • Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The determination of G protein coupled receptor (GPCR) structures at atomic resolution has improved understanding of cellular signaling and will accelerate the development of new drug candidates. However, experimental structures still remain unavailable for a majority of the GPCR family. GPCR structures and their interactions with ligands can also be modelled computationally, but such predictions have limited accuracy. In this work, we explored if molecular dynamics (MD) simulations could be used to refine the accuracy of in silico models of receptor-ligand complexes that were submitted to a community-wide assessment of GPCR structure prediction (GPCR Dock). Two simulation protocols were used to refine 30 models of the D3 dopamine receptor (D3R) in complex with an antagonist. Close to 60 mu s of simulation time was generated and the resulting MD refined models were compared to a D3R crystal structure. In the MD simulations, the transmembrane helix region of the models generally drifted further away from the crystal structure conformation. However, MD refinement was able to improve the accuracy of the ligand binding mode and the second extracellular loop region. The best refinement protocol improved agreement with the experimentally observed ligand binding mode for a majority of the models. Receptor structures with improved virtual screening performance, which was assessed by molecular docking of ligands and decoys, could also be identified among the MD refined models. Application of weak restraints to the transmembrane helixes in the MD simulations further improved predictions of the ligand binding mode and second extracellular loop. These results provide guidelines for application of MD refinement in prediction of GPCR-ligand complexes and directions for further method development.
  •  
3.
  • Rodriguez-Espigares, Ismael, et al. (författare)
  • GPCRmd uncovers the dynamics of the 3D-GPCRome
  • 2020
  • Ingår i: Nature Methods. - : Springer Nature. - 1548-7091 .- 1548-7105. ; 17:8, s. 777-787
  • Tidskriftsartikel (refereegranskat)abstract
    • G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique for exploring the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyze and share GPCR MD data. GPCRmd originates from a community-driven effort to create an open, interactive and standardized database of GPCR MD simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy