SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rodriguez Martinez Xabier) "

Sökning: WFRF:(Rodriguez Martinez Xabier)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rodriguez-Martinez, Xabier, et al. (författare)
  • Microfluidic-Assisted Blade Coating of Compositional Libraries for Combinatorial Applications: The Case of Organic Photovoltaics
  • 2020
  • Ingår i: Advanced Energy Materials. - : WILEY-V C H VERLAG GMBH. - 1614-6832 .- 1614-6840. ; 10:33
  • Tidskriftsartikel (refereegranskat)abstract
    • Microfluidic technologies are highly adept at generating controllable compositional gradients in fluids, a feature that has accelerated the understanding of the importance of chemical gradients in biological processes. That said, the development of versatile methods to generate controllable compositional gradients in the solid-state has been far more elusive. The ability to produce such gradients would provide access to extensive compositional libraries, thus enabling the high-throughput exploration of the parametric landscape of functional solids and devices in a resource-, time-, and cost-efficient manner. Herein, the synergic integration of microfluidic technologies is reported with blade coating to enable the controlled formation of compositional lateral gradients in solution. Subsequently, the transformation of liquid-based compositional gradients into solid-state thin films using this method is demonstrated. To demonstrate efficacy of the approach, microfluidic-assisted blade coating is used to optimize blending ratios in organic solar cells. Importantly, this novel technology can be easily extended to other solution processable systems that require the formation of solid-state compositional lateral gradients.
  •  
2.
  • Rodriguez Martinez, Xabier, et al. (författare)
  • Air Processing of Thick and Semitransparent Laminated Polymer:Non-Fullerene Acceptor Blends Introduces Asymmetric Current-Voltage Characteristics
  • 2023
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 33:27
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-fullerene acceptors have recently revolutionized indoor organic photovoltaics (OPVs) with power conversion efficiencies exceeding 30% in laboratory scale. Nevertheless, transferring their superior performance to larger-scale prototyping, i.e., air-processing via roll-to-roll compatible techniques, still shows severe challenges. Herein, the industrial potential of the PM6:IO4Cl blend, which is one of the most successful indoor OPV photoactive layers (PALs), is thoroughly investigated. The corresponding thick and semitransparent laminated devices are fabricated entirely in air, by blade and slot-die coating. Their current-voltage (J-V) characteristics show anomalous features depending on the illumination side, with the cathode side generally outperforming the anode counterpart. Electrical and optical modeling reveal that a plausible cause of such a phenomenon is a dead layer that forms at the PAL/anode contact interface that does not contribute to the photocurrent. Said layer becomes undetectable when the PALs are made thin enough (<35 nm each) leading to symmetric J-V curves and improved light utilization efficiency. By screening the photovoltaic performance of multiple donor:acceptor blends, certain all-polymer and polymer:fullerene PALs are identified as adequately symmetric candidates for thick device up-scaling. Finally, ternary blends based on PM6:IO4Cl:fullerene may constitute a viable route to mitigate the electrical asymmetry detected on conventional binary blends.
  •  
3.
  • Rodriguez Martinez, Xabier, et al. (författare)
  • Laminated Organic Photovoltaic Modules for Agrivoltaics and Beyond: An Outdoor Stability Study of All-Polymer and Polymer:Small Molecule Blends
  • 2023
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 33:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The integration of organic photovoltaic (OPV) modules on greenhouses is an encouraging practice to offset the energy demands of crop growth and provide extra functionality to dedicated farmland. Nevertheless, such OPV devices must meet certain optical and stability requirements to turn net zero energy greenhouse systems a reality. Here a donor:acceptor polymer blend is optimized for its use in laminated devices while matching the optical needs of crops. Optical modeling is performed and a greenhouse figure-of-merit is introduced to benchmark the trade-off between photovoltaic performance and transparency for both chloroplasts and humans. Balanced donor:acceptor ratios result in better-performing and more thermally stable devices than acceptor-enriched counterparts. The optimized polymer blend and state-of-the-art polymer:small-molecule blends are next transferred to 25 cm(2) laminated modules processed entirely from solution and in ambient conditions. The modules are mounted on a greenhouse as standalone or 4-terminal tandem configurations and their outdoor stability is tracked for months. The study reveals degradation modes undetectable under laboratory conditions such as module delamination, which accounts for 10-20% loss in active area. Among the active layers tested, polymer:fullerene blends are the most stable and position as robust light harvesters in future building-integrated OPV systems.
  •  
4.
  • Rodriguez Martinez, Xabier, et al. (författare)
  • Matching electron transport layers with a non-halogenated and low synthetic complexity polymer:fullerene blend for efficient outdoor and indoor organic photovoltaics
  • 2022
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry. - 2050-7488 .- 2050-7496. ; 10:19, s. 10768-10779
  • Tidskriftsartikel (refereegranskat)abstract
    • The desired attributes of organic photovoltaics (OPV) as a low cost and sustainable energy harvesting technology demand the use of non-halogenated solvent processing for the photoactive layer (PAL) materials, preferably of low synthetic complexity (SC) and without compromising the power conversion efficiency (PCE). Despite their record PCEs, most donor-acceptor conjugated copolymers in combination with non-fullerene acceptors are still far from upscaling due to their high cost and SC. Here we present a non-halogenated and low SC ink formulation for the PAL of organic solar cells, comprising PTQ10 and PC61BM as donor and acceptor materials, respectively, showing a record PCE of 7.5% in blade coated devices under 1 sun, and 19.9% under indoor LED conditions. We further study the compatibility of the PAL with 5 different electron transport layers (ETLs) in inverted architecture. We identify that commercial ZnO-based formulations together with a methanol-based polyethyleneimine-Zn (PEI-Zn) chelated ETL ink are the most suitable interlayers for outdoor conditions, providing fill factors as high as 74% and excellent thickness tolerance (up to 150 nm for the ETL, and >200 nm for the PAL). In indoor environments, SnO2 shows superior performance as it does not require UV photoactivation. Semi-transparent devices manufactured entirely in air via lamination show indoor PCEs exceeding 10% while retaining more than 80% of the initial performance after 400 and 350 hours of thermal and light stress, respectively. As a result, PTQ10:PC61BM combined with either PEI-Zn or SnO2 is currently positioned as a promising system for industrialisation of low cost, multipurpose OPV modules.
  •  
5.
  • Yan, Jun, et al. (författare)
  • Identifying structure-absorption relationships and predicting absorption strength of non-fullerene acceptors for organic photovoltaics
  • 2022
  • Ingår i: Energy & Environmental Science. - : ROYAL SOC CHEMISTRY. - 1754-5692 .- 1754-5706. ; 15:7, s. 2958-2973
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-fullerene acceptors (NFAs) are excellent light harvesters, yet the origin of their high optical extinction is not well understood. In this work, we investigate the absorption strength of NFAs by building a database of time-dependent density functional theory (TDDFT) calculations of similar to 500 pi-conjugated molecules. The calculations are first validated by comparison with experimental measurements in solution and solid state using common fullerene and non-fullerene acceptors. We find that the molar extinction coefficient (epsilon(d,max)) shows reasonable agreement between calculation in vacuum and experiment for molecules in solution, highlighting the effectiveness of TDDFT for predicting optical properties of organic pi-conjugated molecules. We then perform a statistical analysis based on molecular descriptors to identify which features are important in defining the absorption strength. This allows us to identify structural features that are correlated with high absorption strength in NFAs and could be used to guide molecular design: highly absorbing NFAs should possess a planar, linear, and fully conjugated molecular backbone with highly polarisable heteroatoms. We then exploit a random decision forest algorithm to draw predictions for epsilon(d,max) using a computational framework based on extended tight-binding Hamiltonians, which shows reasonable predicting accuracy with lower computational cost than TDDFT. This work provides a general understanding of the relationship between molecular structure and absorption strength in pi-conjugated organic molecules, including NFAs, while introducing predictive machine-learning models of low computational cost.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy