SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rohde Manfred) "

Sökning: WFRF:(Rohde Manfred)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Clark, Andrew G., et al. (författare)
  • Evolution of genes and genomes on the Drosophila phylogeny
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 450:7167, s. 203-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.
  •  
2.
  • Dietrich, Nicole, et al. (författare)
  • Mast cells elicit proinflammatory but not type I interferon responses upon activation of TLRs by bacteria.
  • 2010
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 107:19, s. 8748-8753
  • Tidskriftsartikel (refereegranskat)abstract
    • Balanced induction of proinflammatory and type I IFN responses upon activation of Toll-like receptors (TLRs) determines the outcome of microbial infections and the pathogenesis of autoimmune and other inflammatory diseases. Mast cells, key components of the innate immune system, are known for their debilitating role in allergy and autoimmunity. However, their role in antimicrobial host defenses is being acknowledged increasingly. How mast cells interact with microbes and the nature of responses triggered thereby is not well characterized. Here we show that in response to TLR activation by Gram-positive and -negative bacteria or their components, mast cells elicit proinflammatory but not type I IFN responses. We demonstrate that in mast cells, bound bacteria and TLR ligands remain trapped at the cell surface and do not undergo internalization, a prerequisite for type I IFN induction. Such cells, however, can elicit type I IFNs in response to vesicular stomatitis virus which accesses the cytosolic retinoic acid-inducible gene I receptor. Although important for antiviral immunity, a strong I IFN response is known to contribute to pathogenesis of several bacterial pathogens such as Listeria monocytogenes. Interestingly, we observed that the mast cell-dependent neutrophil mobilization upon L. monocytogenes infection is highly impaired by IFN-beta. Thus, the fact that mast cells, although endowed with the capacity to elicit type I IFNs in response to viral infection, elicit only proinflammatory responses upon bacterial infection shows that mast cells, key effector cells of the innate immune system, are well adjusted for optimal antibacterial and antiviral responses.
  •  
3.
  • Dinkla, Katrin, et al. (författare)
  • Identification of a streptococcal octapeptide motif involved in acute rheumatic fever
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 282:26, s. 18686-18693
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute rheumatic fever is a serious autoimmune sequela of pharyngitis caused by certain group A streptococci. One mechanism applied by streptococcal strains capable of causing acute rheumatic fever is formation of an autoantigenic complex with human collagen IV. In some geographic regions with a high incidence of acute rheumatic fever pharyngeal carriage of group C and group G streptococci prevails. Examination of such strains revealed the presence of M-like surface proteins that bind human collagen. Using a peptide array and recombinant proteins with targeted amino acid substitutions, we could demonstrate that formation of collagen complexes during streptococcal infections depends on an octapeptide motif, which is present in collagen binding M and M-like proteins of different beta-hemolytic streptococcal species. Mice immunized with streptococcal proteins that contain the collagen binding octapeptide motif developed high serum titers of anti-collagen antibodies. In sera of rheumatic fever patients such a collagen autoimmune response was accompanied by specific reactivity against the collagen-binding proteins, linking the observed effect to clinical cases. Taken together, the data demonstrate that the identified octapeptide motif through its action on collagen plays a crucial role in the pathogenesis of rheumatic fever. Eradication of streptococci that express proteins with the collagen binding motif appears advisable for controlling rheumatic fever.
  •  
4.
  • Fattinger, Stefan A., et al. (författare)
  • Salmonella Typhimurium discreet-invasion of the murine gut absorptive epithelium
  • 2020
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacterial pathogens can use secreted effector molecules to drive entry into host cells. Studies of the intestinal pathogen S.Tm have been central to uncover the mechanistic basis for the entry process. More than two decades of research have resulted in a detailed model for how S.Tm invades gut epithelial cells through effector triggering of large Rho-GTPase-dependent actin ruffles. However, the evidence for this model comes predominantly from studies in cultured cell lines. These experimental systems lack many of the architectural and signaling features of the intact gut epithelium. Our study surprisingly reveals that in the intact mouse gut, S.Tm invades absorptive epithelial cells through a process that does not require the Rho-GTPase-activating effectors and can proceed in the absence of the prototypical ruffling response. Instead, S.Tm exploits another effector, SipA, to sneak in through discreet entry structures close to cell-cell junctions. Our results challenge the current model for S.Tm epithelial cell entry and emphasizes the need of taking a physiological host cell context into account when studying bacterium-host cell interactions. Salmonella enterica serovar Typhimurium (S.Tm) infections of cultured cell lines have given rise to the ruffle model for epithelial cell invasion. According to this model, the Type-Three-Secretion-System-1 (TTSS-1) effectors SopB, SopE and SopE2 drive an explosive actin nucleation cascade, resulting in large lamellipodia- and filopodia-containing ruffles and cooperative S.Tm uptake. However, cell line experiments poorly recapitulate many of the cell and tissue features encountered in the host's gut mucosa. Here, we employed bacterial genetics and multiple imaging modalities to compare S.Tm invasion of cultured epithelial cell lines and the gut absorptive epithelium in vivo in mice. In contrast to the prevailing ruffle-model, we find that absorptive epithelial cell entry in the mouse gut occurs through "discreet-invasion". This distinct entry mode requires the conserved TTSS-1 effector SipA, involves modest elongation of local microvilli in the absence of expansive ruffles, and does not favor cooperative invasion. Discreet-invasion preferentially targets apicolateral hot spots at cell-cell junctions and shows strong dependence on local cell neighborhood. This proof-of-principle evidence challenges the current model for how S.Tm can enter gut absorptive epithelial cells in their intact in vivo context.
  •  
5.
  • Gekara, Nelson O, et al. (författare)
  • The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes.
  • 2007
  • Ingår i: Cellular Microbiology. - : Hindawi Limited. - 1462-5814 .- 1462-5822. ; 9:8, s. 2008-2021
  • Tidskriftsartikel (refereegranskat)abstract
    • Cholesterol-dependent cytolysins (CDCs) represent a large family of conserved pore-forming toxins produced by several Gram-positive bacteria such as Listeria monocytogenes, Streptococcus pyrogenes and Bacillus anthracis. These toxins trigger a broad range of cellular responses that greatly influence pathogenesis. Using mast cells, we demonstrate that listeriolysin O (LLO), a prototype of CDCs produced by L. monocytogenes, triggers cellular responses such as degranulation and cytokine synthesis in a Ca(2+)-dependent manner. Ca(2+) signalling by LLO is due to Ca(2+) influx from extracellular milieu and release of from intracellular stores. We show that LLO-induced release of Ca(2+) from intracellular stores occurs via at least two mechanisms: (i) activation of intracellular Ca(2+) channels and (ii) a Ca(2+) channels independent mechanism. The former involves PLC-IP(3)R operated Ca(2+) channels activated via G-proteins and protein tyrosine kinases. For the latter, we propose a novel mechanism of intracellular Ca(2+) release involving injury of intracellular Ca(2+) stores such as the endoplasmic reticulum. In addition to Ca(2+) signalling, the discovery that LLO causes damage to an intracellular organelle provides a new perspective in our understanding of how CDCs affect target cells during infection by the respective bacterial pathogens.
  •  
6.
  • Li, Fengyang, et al. (författare)
  • Patatin-like phospholipase CapV in Escherichia coli-morphological and physiological effects of one amino acid substitution
  • 2022
  • Ingår i: npj Biofilms and Microbiomes. - : Springer Science and Business Media LLC. - 2055-5008. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In rod-shaped bacteria, morphological plasticity occurs in response to stress, which blocks cell division to promote filamentation. We demonstrate here that overexpression of the patatin-like phospholipase variant CapV(Q329R), but not CapV, causes pronounced sulA-independent pyridoxine-inhibited cell filamentation in the Escherichia coli K-12-derivative MG1655 associated with restriction of flagella production and swimming motility. Conserved amino acids in canonical patatin-like phospholipase A motifs, but not the nucleophilic serine, are required to mediate CapV(Q329R) phenotypes. Furthermore, CapV(Q329R) production substantially alters the lipidome and colony morphotype including rdar biofilm formation with modulation of the production of the biofilm activator CsgD, and affects additional bacterial traits such as the efficiency of phage infection and antimicrobial susceptibility. Moreover, genetically diverse commensal and pathogenic E. coli strains and Salmonella typhimurium responded with cell filamentation and modulation in colony morphotype formation to CapV(Q329R) expression. In conclusion, this work identifies the CapV variant CapV(Q329R) as a pleiotropic regulator, emphasizes a scaffold function for patatin-like phospholipases, and highlights the impact of the substitution of a single conserved amino acid for protein functionality and alteration of host physiology.
  •  
7.
  • Łyszkiewicz, Marcin, et al. (författare)
  • SIGN-R1+MHC II+ cells of the splenic marginal zone : a novel type of resident dendritic cells
  • 2011
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 0741-5400 .- 1938-3673. ; 89:4, s. 607-615
  • Tidskriftsartikel (refereegranskat)abstract
    • In the spleen, the MZ forms an interface between red and white pulp. Its major function is to trap blood-borne antigens and to reorient them to APCs and lymphocytes. SIGN-R1(+) cells are of the MZ inherent cell population, which for a long time, have been considered as macrophages. We now show that one subpopulation of SIGN-R1(+) cells that express MHC II molecules should be considered as a resident DC. Histological analysis indicated that SIGN-R1(+) cells have dendritic-like protrusions extending into T and B cell areas. Flow cytometry analysis revealed an expression profile of adhesion, costimulatory, and MHC molecules similar to cDCs but distinct from macrophages. Most importantly, SIGN-R1(+)MHC(+) cells were able to present antigen to naïve CD4 T cells, as well as to cross-present soluble, particulate antigens secreted by Listeria monocytogenes to CD8 T cells in vitro and in vivo. Our experiments identified SIGN-R1(+)MHC II(+) cells as professional APCs and indicate their nature as splenic resident DCs.
  •  
8.
  •  
9.
  • Nedashkovskaya, Olga I., et al. (författare)
  • Maribacter gen. nov., a new member of the family Flavobacteriaceae, isolated from marine habitats, containing the species Maribacter sedimenticola sp nov., Maribacter aquivivus sp nov., Maribacter orientalis sp nov and Maribacter ulvicola sp nov.
  • 2004
  • Ingår i: INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY. - : Microbiology Society. - 1466-5026 .- 1466-5034. ; 54, s. 1017-1023
  • Tidskriftsartikel (refereegranskat)abstract
    • Six novel gliding, heterotrophic, Gram-negative, yellow-pigmented, aerobic, oxidase- and catalase-positive bacteria were isolated from the green alga Ulva fenestrata, sea water and a bottom sediment sample collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied were members of the family Flavobacteriaceae. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the novel bacteria have been assigned to the new genus Maribacter gen. nov., as Maribacter sedimenticola sp. nov., Maribacter orientalis sp. nov., Maribacter aquivivus sp. nov. and Maribacter ulvicola sp. nov., with the type strains KMM 3903T (=KCTC 12966T=CCUG 47098T), KMM 3947T (=KCTC 12967T=CCUG 48008T), KMM 3949T (=KCTC 12968T=CCUG 48009T) and KMM 3951T (=KCTC 12969T=DSM 15366T), respectively.
  •  
10.
  • Resch, Ulrike, et al. (författare)
  • A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus
  • 2016
  • Ingår i: mBio. - 2161-2129 .- 2150-7511. ; 7:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Export of macromolecules via extracellular membrane-derived vesicles (MVs) plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bacteria remain undefined. Here, we describe MV production in the Gram-positive human pathogen group A streptococcus (GAS), the etiological agent of necrotizing fasciitis and streptococcal toxic shock syndrome. M1 serotype GAS isolates in culture exhibit MV structures both on the cell wall surface and in the near vicinity of bacterial cells. A comprehensive analysis of MV proteins identified both virulence-associated protein substrates of the general secretory pathway in addition to "anchorless surface proteins." Characteristic differences in the contents, distributions, and fatty acid compositions of specific lipids between MVs and GAS cell membrane were also observed. Furthermore, deep RNA sequencing of vesicular RNAs revealed that GAS MVs contained differentially abundant RNA species relative to bacterial cellular RNA. MV production by GAS strains varied in a manner dependent on an intact two-component system, CovRS, with MV production negatively regulated by the system. Modulation of MV production through CovRS was found to be independent of both GAS cysteine protease SpeB and capsule biosynthesis. Our data provide an explanation for GAS secretion of macromolecules, including RNAs, lipids, and proteins, and illustrate a regulatory mechanism coordinating this secretory response. IMPORTANCE Group A streptococcus (GAS) is a Gram-positive bacterial pathogen responsible for more than 500,000 deaths annually. Establishment of GAS infection is dependent on a suite of proteins exported via the general secretory pathway. Here, we show that GAS naturally produces extracellular vesicles with a unique lipid composition that are laden with proteins and RNAs. Interestingly, both virulence-associated proteins and RNA species were found to be differentially abundant in vesicles relative to the bacteria. Furthermore, we show that genetic disruption of the virulence-associated two-component regulator CovRS leads to an increase in vesicle production. This study comprehensively describes the protein, RNA, and lipid composition of GAS-secreted MVs and alludes to a regulatory system impacting this process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy