SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rokicińska Anna) "

Sökning: WFRF:(Rokicińska Anna)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berniak, Tomasz, et al. (författare)
  • Covalent bonding of N-hydroxyphthalimide on mesoporous silica for catalytic aerobic oxidation of p-xylene at atmospheric pressure
  • 2024
  • Ingår i: ChemPlusChem. - 2192-6506. ; 89:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The surface of SBA-15 mesoporous silica was modified by N-hydroxyphthalimide (NHPI) moieties acting as immobilized active species for aerobic oxidation of alkylaromatic hydrocarbons. The incorporation was carried out by four original approaches: the grafting-from and grafting-onto techniques, using the presence of surface silanols enabling the formation of particularly stable O−Si−C bonds between the silica support and the organic modifier. The strategies involving the Heck coupling led to the formation of NHPI groups separated from the SiO2 surface by a vinyl linker, while one of the developed modification paths based on the grafting of an appropriate organosilane coupling agent resulted in the active phase devoid of this structural element. The successful course of the synthesis was verified by FTIR and 1H NMR measurements. Furthermore, the formed materials were examined in terms of their chemical composition (elemental analysis, thermal analysis), structure of surface groups (13C NMR, XPS), porosity (low-temperature N2 adsorption), and tested as catalysts in the aerobic oxidation of p-xylene at atmospheric pressure. The highest conversion and selectivity to p-toluic acid were achieved using the catalyst with enhanced availability of non-hydrolyzed NHPI groups in the pore system. The catalytic stability of the material was additionally confirmed in several subsequent reaction cycles.
  •  
2.
  • Budnyak, Tetyana, et al. (författare)
  • LignoPhot : Conversion of hydrolysis lignin into the photoactive hybrid lignin/Bi4O5Br2/BiOBr composite for simultaneous dyes oxidation and Co2+ and Ni2+ recycling
  • 2021
  • Ingår i: Chemosphere. - : Elsevier BV. - 0045-6535 .- 1879-1298. ; 279
  • Tidskriftsartikel (refereegranskat)abstract
    • Valorization of lignin is still an open question and lignin has therefore remained an underutilized biomaterial. This situation is even more pronounced for hydrolysis lignin, which is characterized by a highly condensed and excessively cross-linked structure. We demonstrate the synthesis of photoactive lignin/Bi4O5Br2/BiOBr bio-inorganic composites consisting of a lignin substrate that is coated by semiconducting nanosheets. The XPS analysis reveals that growing these nanosheets on lignin instead on cellulose prevents the formation of Bi5+ ions at the surface region, yielding thus a modified hetero-junction Bi4O5Br2/BiOBr. The material contains 18.9% of Bi4O5Br2/BiOBr and is effective for the photocatalytic degradation of cationic methylene blue (MB) and zwitterionic rhodamine B (RhB) dyes under light irradiation. Lignin/Bi4O5Br2/BiOBr decreases the dye concentration from 80 mg L-1 to 12.3 mg L-1 for RhB (85%) and from 80 mg L-1 to 4.4 mg L-1 for MB (95%). Complementary to the dye degradation, the lignin as a main component of the composite, was found to be efficient and rapid biosorbent for nickel, lead, and cobalt ions. The low cost, stability and ability to simultaneously photo-oxidize organic dyes and adsorb metal ions, make the photoactive lignin/Bi4O5Br2/BiOBr composite a prospective material for textile wastewaters remediation and metal ions recycling.
  •  
3.
  • Chen, Zheng, et al. (författare)
  • Graphitic nitrogen in carbon catalysts is important for the reduction of nitrite as revealed by naturally abundant N-15 NMR spectroscopy
  • 2021
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; :20
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal-free nitrogen-doped carbon is considered as a green functional material, but the structural determination of the atomic positions of nitrogen remains challenging. We recently demonstrated that directly-excited solid state N-15 NMR (ssNMR) spectroscopy is a powerful tool for the determination of such positions in N-doped carbon at natural N-15 isotope abundance. Here we report a green chemistry approach for the synthesis of N-doped carbon using cellulose as a precursor, and a study of the catalytic properties and atomic structures of the related catalyst. N-doped carbon (NH3) was obtained by the oxidation of cellulose with HNO3 followed by ammonolysis at 800 degrees C. It had a N content of 6.5 wt% and a surface area of 557 m(2) g(-1), and N-15 ssNMR spectroscopy provided evidence for graphitic nitrogen besides regular pyrrolic and pyridinic nitrogen. This structural determination allowed probing the role of graphitic nitrogen in electrocatalytic reactions, such as the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nitrite reduction reaction. The N-doped carbon catalyst (NH3) showed higher electrocatalytic activities in the OER and HER under alkaline conditions and higher activity for nitrite reduction, as compared with a catalyst prepared by the carbonization of HNO3-treated cellulose in N-2. The electrocatalytic selectivity for nitrite reduction of the N-doped carbon catalyst (NH3) was directly related to the graphitic nitrogen functions. Complementary structural analyses by means of C-13 and H-1 ssNMR, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature N-2 adsorption were performed and provided support to the findings. The results show that directly-excited N-15 ssNMR spectroscopy at natural N-15 abundance is generally capable of providing information on N-doped carbon materials if relaxation properties are favorable. It is expected that this approach can be applied to a wide range of solids with an intermediate concentration of N atoms.
  •  
4.
  • Chen, Zheng, et al. (författare)
  • Increased photocurrent of CuWO4 photoanodes by modification with the oxide carbodiimide Sn2O(NCN)
  • 2020
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 49:11, s. 3450-3456
  • Tidskriftsartikel (refereegranskat)abstract
    • Tin(ii) oxide carbodiimide is a novel prospective semiconductor material with a band gap of 2.1 eV and lies chemically between metal oxides and metal carbodiimides. We report on the photochemical properties of this oxide carbodiimide and apply the material to form a heterojunction with CuWO4 thin films for photoelectrochemical (PEC) water oxidation. Mott-Schottky experiments reveal that the title compound is an n-type semiconductor with a flat-band potential of -0.03 V and, as such, the position of the valence band edge would be suitable for photochemical water oxidation. Sn2O(NCN) increases the photocurrent of CuWO4 thin films from 32 mu A cm(-2) to 59 mu A cm(-2) at 1.23 V vs. reversible hydrogen electrode (RHE) in 0.1 M phosphate buffer (pH 7.0) under backlight AM 1.5G illumination. This upsurge in photocurrent originates in a synergistic effect between the oxide and oxide carbodiimide, because the heterojunction photoanode displays a higher current density than the sum of its individual components. Structural analysis by powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveals that Sn2O(NCN) forms a core-shell structure Sn2O(NCN)@SnPOx during the PEC water oxidation in phosphate buffer. The electrochemical activation is similar to the behavior of Mn(NCN) but different from Co(NCN).
  •  
5.
  • Chen, Zheng, et al. (författare)
  • Reaction pathways on N-substituted carbon catalysts during the electrochemical reduction of nitrate to ammonia
  • 2022
  • Ingår i: Catalysis Science & Technology. - : Royal Society of Chemistry. - 2044-4753 .- 2044-4761. ; 12:11, s. 3582-3593
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical reduction of nitrate into ammonia is one potential strategy to valorize pollutants needed to close the nitrogen cycle. The understanding of carbonaceous materials as metal-free representatives of electrocatalysts is of high importance to ensure sufficient activity and target selectivity. We report on the role of defects in cellulose-derived nitrogen-doped carbon (NDC) materials, produced by ammonolysis at different temperatures, to obtain efficient electrocatalysts for the nitrate reduction reaction (NO3RR). Carbon catalyst ammonolysis at 800 °C (NDC-800) yields the highest electrochemical performance, exhibiting 73.1% NH4+ selectivity and nearly 100% NO3− reduction efficiency with a prolonged NO3RR time (48 h) at −1.5 V vs. Ag/AgCl in a 0.1 M Na2SO4 electrolyte. We provide support to our findings by undertaking complementary structural analyses with scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, low-temperature N2 adsorption, and theoretical studies based on multi-scale/level calculations. Atomistic molecular dynamics simulations based on a reactive force field combined with quantum chemistry (QC) calculations on representative model systems suggest possible realistic scenarios of the material structure and reaction mechanisms of the NO3− reduction routes.
  •  
6.
  • Chen, Zheng, et al. (författare)
  • Tailoring the Surface Properties of Bi2O2NCN by in Situ Activation for Augmented Photoelectrochemical Water Oxidation on WO3 and CuWO4 Heterojunction Photoanodes
  • 2020
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 59:18, s. 13589-13597
  • Tidskriftsartikel (refereegranskat)abstract
    • Bismuth(III) oxide-carbodiimide (Bi2O2NCN) has been recently discovered as a novel mixed-anion semiconductor, which is structurally related to bismuth oxides and oxysulfides. Given the structural versatility of these layered structures, we investigated the unexplored photochemical properties of the target compound for photoelectrochemical (PEC) water oxidation. Although Bi2O2NCN does not generate a noticeable photocurrent as a single photoabsorber, the fabrication of heterojunctions with the WO3 thin film electrode shows an upsurge of current density from 0.9 to 1.1 mA cm–2 at 1.23 V vs reversible hydrogen electrode (RHE) under 1 sun (AM 1.5G) illumination in phosphate electrolyte (pH 7.0). Mechanistic analysis and structural analysis using powder X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (STEM EDX) indicate that Bi2O2NCN transforms during operating conditions in situ to a core–shell structure Bi2O2NCN/BiPO4. When compared to WO3/BiPO4, the in situ electrolyte-activated WO3/Bi2O2NCN photoanode shows a higher photocurrent density due to superior charge separation across the oxide/oxide-carbodiimide interface layer. Changing the electrolyte from phosphate to sulfate results in a lower photocurrent and shows that the electrolyte determines the surface chemistry and mediates the PEC activity of the metal oxide-carbodiimide. A similar trend could be observed for CuWO4 thin film photoanodes. These results show the potential of metal oxide-carbodiimides as relatively novel representatives of mixed-anion compounds and shed light on the importance of the control over the surface chemistry to enable the in situ activation.
  •  
7.
  • Gopakumar, Aswin, et al. (författare)
  • Lignin-Supported Heterogeneous Photocatalyst for the Direct Generation of H2O2 from Seawater
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:6, s. 2603-2613
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of smart and sustainable photocatalysts is in high priority for the synthesis of H2O2 because the global demand for H2O2 is sharply rising. Currently, the global market share for H2O2 is around 4 billion US$ and is expected to grow by about 5.2 billion US$ by 2026. Traditional synthesis of H2O2 via the anthraquinone method is associated with the generation of substantial chemical waste as well as the requirement of a high energy input. In this respect, the oxidative transformation of pure water is a sustainable solution to meet the global demand. In fact, several photocatalysts have been developed to achieve this chemistry. However, 97% of the water on our planet is seawater, and it contains 3.0–5.0% of salts. The presence of salts in water deactivates the existing photocatalysts, and therefore, the existing photocatalysts have rarely shown reactivity toward seawater. Considering this, a sustainable heterogeneous photocatalyst, derived from hydrolysis lignin, has been developed, showing an excellent reactivity toward generating H2O2 directly from seawater under air. In fact, in the presence of this catalyst, we have been able to achieve 4085 μM of H2O2. Expediently, the catalyst has shown longer durability and can be recycled more than five times to generate H2O2 from seawater. Finally, full characterizations of this smart photocatalyst and a detailed mechanism have been proposed on the basis of the experimental evidence and multiscale/level calculations. 
  •  
8.
  • Lu, Can, et al. (författare)
  • Nanostructured core-shell metal borides-oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation
  • 2020
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 12:5, s. 3121-3128
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxygen evolution reaction (OER) catalysts are critical components of photoanodes for photoelectrochemical (PEC) water oxidation. Herein, nanostructured metal boride MB (M = Co, Fe) electrocatalysts, which have been synthesized by a Sn/SnCl2 redox assisted solid-state method, were integrated with WO3 thin films to build heterojunction photoanodes. As-obtained MB modified WO3 photoanodes exhibit enhanced charge carrier transport, amended separation of photogenerated electrons and holes, prolonged hole lifetime and increased charge carrier density. Surface modification of CoB and FeB significantly enhances the photocurrent density of WO3 photoanodes from 0.53 to 0.83 and 0.85 mA cm(-2), respectively, in transient chronoamperometry (CA) at 1.23 V vs. RHE (V-RHE) under interrupted illumination in 0.1 M Na2SO4 electrolyte (pH 7), corresponding to an increase of 1.6 relative to pristine WO3. In contrast, the pristine MB thin film electrodes do not produce noticeable photocurrent during water oxidation. The metal boride catalysts transform in situ to a core-shell structure with a metal boride core and a metal oxide (MO, M = Co, Fe) surface layer. When coupled to WO3 thin films, the CoB@CoOx nanostructures exhibit a higher catalytic enhancement than corresponding pure cobalt borate (Co-B-i) and cobalt hydroxide (Co(OH)(x)) electrocatalysts. Our results emphasize the role of the semiconductor-electrocatalyst interface for photoelectrodes and their high dependency on materials combination.
  •  
9.
  • Lu, Can, et al. (författare)
  • NiO/Poly(4-alkylthiazole) Hybrid Interface for Promoting Spatial Charge Separation in Photoelectrochemical Water Reduction
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:26, s. 29173-29180
  • Tidskriftsartikel (refereegranskat)abstract
    • Conjugated polymers are emerging as alternatives to inorganic semiconductors for the photoelectrochemical water splitting. Herein, semi-transparent poly(4-alkylthiazole) layers with different trialkylsilyloxymethyl (R3SiOCH2-) side chains (PTzTNB, R = n-butyl; PTzTHX, R = n-hexyl) are applied to functionalize NiO thin films to build hybrid photocathodes. The hybrid interface allows for the effective spatial separation of the photoexcited carriers. Specifically, the PTzTHX-deposited composite photocathode increases the photocurrent density 6- and 2-fold at 0 V versus the reversible hydrogen electrode in comparison to the pristine NiO and PTzTHX photocathodes, respectively. This is also reflected in the substantial anodic shift of onset potential under simulated Air Mass 1.5 Global illumination, owing to the prolonged lifetime, augmented density, and alleviated recombination of photogenerated electrons. Additionally, coupling the inorganic and organic components also enhances the photoabsorption and amends the stability of the photocathode-driven system. This work demonstrates the feasibility of poly(4-alkylthiazole)s as an effective alternative to known inorganic semiconductor materials. We highlight the interface alignment for polymer-based photoelectrodes.
  •  
10.
  • Lu, Can, et al. (författare)
  • Semi Transparent Three-Dimensional Macroporous Quaternary Oxynitride Photoanodes for Photoelectrochemical Water Oxidation
  • 2022
  • Ingår i: Chemistry of Materials. - : American Chemical Society (ACS). - 0897-4756 .- 1520-5002. ; 34:15, s. 6902-6911
  • Tidskriftsartikel (refereegranskat)abstract
    • Semi transparent three-dimensional macroporous (3DM) photoanodes based on quaternary oxynitrides have the potential to simultaneously realize superior light harvesting and efficient charge transfer in a tandem photoelectrochemical (PEC) cell. A 3DM CaTaO2N photoanode was prepared for the first time on a GaN/Al2O3 substrate via a chemical route, and it exhibits a high transmittance of > 60% in the wide solar spectrum and a photoresponse onset at -0.3 V versus the reversible hydrogen electrode (V-RHE) under simulated solar illumination. In particular, a plateau photocurrent density of 0.21 mA cm(-2) was achieved at a low potential of 0.4 V-RHE , which was 1.6-fold and more than 50-fold higher than a two-dimensional macroporous (2DM) CaTaO2N/GaN/Al2O3 photoanode and a conventional particle-based CaTaO2N/GaN/Al2O3 photoanode, respectively. The bicontinuous, interconnected pore structure within this 3DM film can improve charge carrier separation and collection by reducing the average diffusion distance for minority carriers toward the electrolyte. Optical measurements and simulations verified the enhanced sunlight harvesting in the 3DM photoanode, which was ascribed to the concentrated distribution of the electric field and multiple scattering. This study provides guidance for future synthesis of highly efficient semitransparent 3DM quaternary oxynitride-based photoanodes for a tandem PEC device.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy