SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rombouts I.) "

Sökning: WFRF:(Rombouts I.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alberts, R, et al. (författare)
  • Genetic association analysis identifies variants associated with disease progression in primary sclerosing cholangitis
  • 2018
  • Ingår i: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 67:8, s. 1517-1524
  • Tidskriftsartikel (refereegranskat)abstract
    • Primary sclerosing cholangitis (PSC) is a genetically complex, inflammatory bile duct disease of largely unknown aetiology often leading to liver transplantation or death. Little is known about the genetic contribution to the severity and progression of PSC. The aim of this study is to identify genetic variants associated with PSC disease progression and development of complications.DesignWe collected standardised PSC subphenotypes in a large cohort of 3402 patients with PSC. After quality control, we combined 130 422 single nucleotide polymorphisms of all patients—obtained using the Illumina immunochip—with their disease subphenotypes. Using logistic regression and Cox proportional hazards models, we identified genetic variants associated with binary and time-to-event PSC subphenotypes.ResultsWe identified genetic variant rs853974 to be associated with liver transplant-free survival (p=6.07×10–9). Kaplan-Meier survival analysis showed a 50.9% (95% CI 41.5% to 59.5%) transplant-free survival for homozygous AA allele carriers of rs853974 compared with 72.8% (95% CI 69.6% to 75.7%) for GG carriers at 10 years after PSC diagnosis. For the candidate gene in the region, RSPO3, we demonstrated expression in key liver-resident effector cells, such as human and murine cholangiocytes and human hepatic stellate cells.ConclusionWe present a large international PSC cohort, and report genetic loci associated with PSC disease progression. For liver transplant-free survival, we identified a genome-wide significant signal and demonstrated expression of the candidate gene RSPO3 in key liver-resident effector cells. This warrants further assessments of the role of this potential key PSC modifier gene.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Rombouts, I., et al. (författare)
  • Crosslinks in wheat gluten films with hexagonal close-packed protein structures
  • 2013
  • Ingår i: Industrial crops and products (Print). - : Elsevier BV. - 0926-6690 .- 1872-633X. ; 51, s. 229-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Wheat gluten/glycerol (WGG) films were extruded with aqueous ammonia/salicylic acid or urea to investigate the reactions contributing to their hexagonal close-packed protein structures and material properties. The addition of aqueous ammonia and salicylic acid increased the pH, which, in turn, increased the level of intermolecular disulfide and lanthionine cross-links in the WGG films. Increased protein cross-linking reactions resulted in higher material strength and tensile modulus. These cross-linking reactions and the resulting material properties were similar for WGG films with 7.5% and 10% aqueous ammonia. Added urea into WGG film partially degraded into cyanate and ammonium. Cyanate subsequently reacted with lysine and cysteine to ε-carbamyllysine and S-carbamylcysteine, respectively. Even though these reactions resulted in a more alkaline reaction environment, hereby favoring disulfide bond formation and decreasing protein extractability, they also prevented the involvement of cysteine and lysine in protein cross-linking. The alkylation of these reactive amino acids, together with the plasticizing effect of urea, led to lower material strength and elastic modulus with increasing levels of urea.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy