SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rondinini Carlo) "

Sökning: WFRF:(Rondinini Carlo)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kim, HyeJin, et al. (författare)
  • Towards a better future for biodiversity and people : Modelling Nature Futures
  • 2023
  • Ingår i: Global Environmental Change. - 0959-3780 .- 1872-9495. ; 82
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nature Futures Framework (NFF) is a heuristic tool for co-creating positive futures for nature and people. It seeks to open up a diversity of futures through mainly three value perspectives on nature - Nature for Nature, Nature for Society, and Nature as Culture. This paper describes how the NFF can be applied in modelling to support decision-making. First, we describe key considerations for the NFF in developing qualitative and quantitative scenarios: i) multiple value perspectives on nature as a state space where pathways improving nature toward a frontier can be represented, ii) mutually reinforcing key feedbacks of social-ecological systems that are important for nature conservation and human wellbeing, iii) indicators of multiple knowledge systems describing the evolution of complex social-ecological dynamics. We then present three approaches to modelling Nature Futures scenarios in the review, screening, and design phases of policy processes. This paper seeks to facilitate the integration of relational values of nature in models and strengthen modelled linkages across biodiversity, nature's contributions to people, and quality of life.
  •  
2.
  • Pereira, Laura M., et al. (författare)
  • Developing multiscale and integrative nature-people scenarios using the Nature Futures Framework
  • 2020
  • Ingår i: People and Nature. - : Wiley. - 2575-8314. ; 2:4, s. 1172-1195
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Scientists have repeatedly argued that transformative, multiscale global scenarios are needed as tools in the quest to halt the decline of biodiversity and achieve sustainability goals.2. As a first step towards achieving this, the researchers who participated in the scenarios and models expert group of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) entered into an iterative, participatory process that led to the development of the Nature Futures Framework (NFF).3. The NFF is a heuristic tool that captures diverse, positive relationships of humans with nature in the form of a triangle. It can be used both as a boundary object for continuously opening up more plural perspectives in the creation of desirable nature scenarios and as an actionable framework for developing consistent nature scenarios across multiple scales.4. Here we describe the methods employed to develop the NFF and how it fits into a longer term process to create transformative, multiscale scenarios for nature. We argue that the contribution of the NFF is twofold: (a) its ability to hold a plurality of perspectives on what is desirable, which enables the development of joint goals and visions and recognizes the possible convergence and synergies of measures to achieve these visions and (b), its multiscale functionality for elaborating scenarios and models that can inform decision-making at relevant levels, making it applicable across specific places and perspectives on nature.5. If humanity is to achieve its goal of a more sustainable and prosperous future rooted in a flourishing nature, it is critical to open up a space for more plural perspectives of human-nature relationships. As the global community sets out to develop new goals for biodiversity, the NFF can be used as a navigation tool helping to make diverse, desirable futures possible.
  •  
3.
  • Ranc, Nathan, et al. (författare)
  • Performance tradeoffs in target-group bias correction for species distribution models
  • 2017
  • Ingår i: Ecography. - : Wiley. - 0906-7590 .- 1600-0587. ; 40:9, s. 1076-1087
  • Tidskriftsartikel (refereegranskat)abstract
    • Species distribution models (SDMs) are often calibrated using presence-only datasets plagued with environmental sampling bias, which leads to a decrease of model accuracy. In order to compensate for this bias, it has been suggested that background data (or pseudoabsences) should represent the area that has been sampled. However, spatially-explicit knowledge of sampling effort is rarely available. In multi-species studies, sampling effort has been inferred following the target-group (TG) approach, where aggregated occurrence of TG species informs the selection of background data. However, little is known about the species-specific response to this type of bias correction. The present study aims at evaluating the impacts of sampling bias and bias correction on SDM performance. To this end, we designed a realistic system of sampling bias and virtual species based on 92 terrestrial mammal species occurring in the Mediterranean basin. We manipulated presence and background data selection to calibrate four SDM types. Unbiased (unbiased presence data) and biased (biased presence data) SDMs were calibrated using randomly distributed background data. We used real and TG-estimated sampling efforts in background selection to correct for sampling bias in presence data. Overall, environmental sampling bias had a deleterious effect on SDM performance. In addition, bias correction improved model accuracy, and especially when based on spatially-explicit knowledge of sampling effort. However, our results highlight important species-specific variations in susceptibility to sampling bias, which were largely explained by range size: widely-distributed species were most vulnerable to sampling bias and bias correction was even detrimental for narrow-ranging species. Furthermore, spatial discrepancies in SDM predictions suggest that bias correction effectively replaces an underestimation bias with an overestimation bias, particularly in areas of low sampling intensity. Thus, our results call for a better estimation of sampling effort in multispecies system, and cautions the uninformed and automatic application of TG bias correction.
  •  
4.
  • Rosa, Isabel M. D., et al. (författare)
  • Multiscale scenarios for nature futures
  • 2017
  • Ingår i: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 1:10, s. 1416-1419
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Targets for human development are increasingly connected with targets for nature, however, existing scenarios do not explicitly address this relationship. Here, we outline a strategy to generate scenarios centred on our relationship with nature to inform decision-making at multiple scales.
  •  
5.
  • Schipper, Aafke M., et al. (författare)
  • Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010
  • 2016
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 22:12, s. 3948-3959
  • Tidskriftsartikel (refereegranskat)abstract
    • Although it is generally recognized that global biodiversity is declining, few studies have examined long-term changes in multiple biodiversity dimensions simultaneously. In this study, we quantified and compared temporal changes in the abundance, taxonomic diversity, functional diversity, and phylogenetic diversity of bird assemblages, using roadside monitoring data of the North American Breeding Bird Survey from 1971 to 2010. We calculated 12 abundance and diversity metrics based on 5-year average abundances of 519 species for each of 768 monitoring routes. We did this for all bird species together as well as for four subgroups based on breeding habitat affinity (grassland, woodland, wetland, and shrubland breeders). The majority of the biodiversity metrics increased or remained constant over the study period, whereas the overall abundance of birds showed a pronounced decrease, primarily driven by declines of the most abundant species. These results highlight how stable or even increasing metrics of taxonomic, functional, or phylogenetic diversity may occur in parallel with substantial losses of individuals. We further found that patterns of change differed among the species subgroups, with both abundance and diversity increasing for woodland birds and decreasing for grassland breeders. The contrasting changes between abundance and diversity and among the breeding habitat groups underscore the relevance of a multifaceted approach to measuring biodiversity change. Our findings further stress the importance of monitoring the overall abundance of individuals in addition to metrics of taxonomic, functional, or phylogenetic diversity, thus confirming the importance of population abundance as an essential biodiversity variable.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy