SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ropero S) "

Sökning: WFRF:(Ropero S)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alonso-Magdalena, Paloma, et al. (författare)
  • Antidiabetic Actions of an Estrogen Receptor beta Selective Agonist
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2015-2025
  • Tidskriftsartikel (refereegranskat)abstract
    • The estrogen receptor beta (ER beta) is emerging as an important player in the physiology of the endocrine pancreas. We evaluated the role and antidiabetic actions of the ER beta selective agonist WAY200070 as an insulinotropic molecule. We demonstrate that WAY200070 enhances glucose-stimulated insulin secretion both in mouse and human islets. In vivo experiments showed that a single administration of WAY200070 leads to an increase in plasma insulin levels with a concomitant improved response to a glucose load. Two-week treatment administration increased glucose-induced insulin release and pancreatic beta-cell mass and improved glucose and insulin sensitivity. In addition, streptozotocin-nicotinamide-induced diabetic mice treated with WAY200070 exhibited a significant improvement in plasma insulin levels and glucose tolerance as well as a regeneration of pancreatic beta-cell mass. Studies performed in db/db mice demonstrated that this compound restored first-phase insulin secretion and enhanced pancreatic beta-cell mass. We conclude that ER beta agonists should be considered as new targets for the treatment of diabetes.
  •  
2.
  • Alonso-Magdalena, P, et al. (författare)
  • Antidiabetic actions of an estrogen receptor β selective agonist
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:6, s. 2015-2025
  • Tidskriftsartikel (refereegranskat)abstract
    • The estrogen receptor β (ERβ) is emerging as an important player in the physiology of the endocrine pancreas. We evaluated the role and antidiabetic actions of the ERβ selective agonist WAY200070 as an insulinotropic molecule. We demonstrate that WAY200070 enhances glucose-stimulated insulin secretion both in mouse and human islets. In vivo experiments showed that a single administration of WAY200070 leads to an increase in plasma insulin levels with a concomitant improved response to a glucose load. Two-week treatment administration increased glucose-induced insulin release and pancreatic β-cell mass and improved glucose and insulin sensitivity. In addition, streptozotocin-nicotinamide–induced diabetic mice treated with WAY200070 exhibited a significant improvement in plasma insulin levels and glucose tolerance as well as a regeneration of pancreatic β-cell mass. Studies performed in db/db mice demonstrated that this compound restored first-phase insulin secretion and enhanced pancreatic β-cell mass. We conclude that ERβ agonists should be considered as new targets for the treatment of diabetes.
  •  
3.
  • Fraga, MF, et al. (författare)
  • Epigenetic differences arise during the lifetime of monozygotic twins
  • 2005
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 102:30, s. 10604-10609
  • Tidskriftsartikel (refereegranskat)abstract
    • Monozygous twins share a common genotype. However, most monozygotic twin pairs are not identical; several types of phenotypic discordance may be observed, such as differences in susceptibilities to disease and a wide range of anthropomorphic features. There are several possible explanations for these observations, but one is the existence of epigenetic differences. To address this issue, we examined the global and locus-specific differences in DNA methylation and histone acetylation of a large cohort of monozygotic twins. We found that, although twins are epigenetically indistinguishable during the early years of life, older monozygous twins exhibited remarkable differences in their overall content and genomic distribution of 5-methylcytosine DNA and histone acetylation, affecting their gene-expression portrait. These findings indicate how an appreciation of epigenetics is missing from our understanding of how different phenotypes can be originated from the same genotype.
  •  
4.
  •  
5.
  • Ropero, Santiago, et al. (författare)
  • Epigenetic loss of the familial tumor-suppressor gene exostosin-1 (EXT1) disrupts heparan sulfate synthesis in cancer cells.
  • 2004
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 13:22, s. 2753-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Germline mutations in the Exostoses-1 gene (EXT1) are found in hereditary multiple exostoses syndrome, which is characterized by the formation of osteochondromas and an increased risk of chondrosarcomas and osteosarcomas. However, despite its putative tumor-suppressor function, little is known of the contribution of EXT1 to human sporadic malignancies. Here, we report that EXT1 function is abrogated in human cancer cells by transcriptional silencing associated with CpG island promoter hypermethylation. We also show that, at the biochemical and cellular levels, the epigenetic inactivation of EXT1, a glycosyltransferase, leads to the loss of heparan sulfate (HS) synthesis. Reduced HS production can be reversed by the use of a DNA demethylating agent. Furthermore, the re-introduction of EXT1 into cancer cell lines displaying methylation-dependent silencing of EXT1 induces tumor-suppressor-like features, e.g. reduced colony formation density and tumor growth in nude mouse xenograft models. Screening a large collection of human cancer cell lines (n=79) and primary tumors (n=454) from different cell types, we found that EXT1 CpG island hypermethylation was common in leukemia, especially acute promyelocytic leukemia and acute lymphoblastic leukemia, and non-melanoma skin cancer. These findings highlight the importance of EXT1 epigenetic inactivation, leading to an abrogation of HS biosynthesis, in the processes of tumor onset and progression.
  •  
6.
  • Soriano, S, et al. (författare)
  • Rapid regulation of K(ATP) channel activity by 17{beta}-estradiol in pancreatic {beta}-cells involves the estrogen receptor {beta} and the atrial natriuretic peptide receptor
  • 2009
  • Ingår i: Molecular endocrinology (Baltimore, Md.). - : The Endocrine Society. - 1944-9917 .- 0888-8809. ; 23:12, s. 1973-1982
  • Tidskriftsartikel (refereegranskat)abstract
    • The ATP-sensitive potassium (KATP) channel is a key molecule involved in glucose-stimulated insulin secretion. The activity of this channel regulates β-cell membrane potential, glucose- induced [Ca2+]i signals, and insulin release. In this study, the rapid effect of physiological concentrations of 17β-estradiol (E2) on KATP channel activity was studied in intact β-cells by use of the patch-clamp technique. When cells from wild-type (WT) mice were used, 1 nm E2 rapidly reduced KATP channel activity by 60%. The action of E2 on KATP channel was not modified in β-cells from ERα−/− mice, yet it was significantly reduced in cells from ERβ−/− mice. The effect of E2 was mimicked by the ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN). Activation of ERβ by DPN enhanced glucose-induced Ca2+ signals and insulin release. Previous evidence indicated that the acute inhibitory effects of E2 on KATP channel activity involve cyclic GMP and cyclic GMP-dependent protein kinase. In this study, we used β-cells from mice with genetic ablation of the membrane guanylate cyclase A receptor for atrial natriuretic peptide (also called the atrial natriuretic peptide receptor) (GC-A KO mice) to demonstrate the involvement of this membrane receptor in the rapid E2 actions triggered in β-cells. E2 rapidly inhibited KATP channel activity and enhanced insulin release in islets from WT mice but not in islets from GC-A KO mice. In addition, DPN reduced KATP channel activity in β-cells from WT mice, but not in β-cells from GC-A KO mice. This work unveils a new role for ERβ as an insulinotropic molecule that may have important physiological and pharmacological implications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy