SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosa Palacin M.) "

Sökning: WFRF:(Rosa Palacin M.)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bhowmik, Arghya, et al. (författare)
  • Implications of the BATTERY 2030+ AI-Assisted Toolkit on Future Low-TRL Battery Discoveries and Chemistries
  • 2022
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 12:17
  • Forskningsöversikt (refereegranskat)abstract
    • BATTERY 2030+ targets the development of a chemistry neutral platform for accelerating the development of new sustainable high-performance batteries. Here, a description is given of how the AI-assisted toolkits and methodologies developed in BATTERY 2030+ can be transferred and applied to representative examples of future battery chemistries, materials, and concepts. This perspective highlights some of the main scientific and technological challenges facing emerging low-technology readiness level (TRL) battery chemistries and concepts, and specifically how the AI-assisted toolkit developed within BIG-MAP and other BATTERY 2030+ projects can be applied to resolve these. The methodological perspectives and challenges in areas like predictive long time- and length-scale simulations of multi-species systems, dynamic processes at battery interfaces, deep learned multi-scaling and explainable AI, as well as AI-assisted materials characterization, self-driving labs, closed-loop optimization, and AI for advanced sensing and self-healing are introduced. A description is given of tools and modules can be transferred to be applied to a select set of emerging low-TRL battery chemistries and concepts covering multivalent anodes, metal-sulfur/oxygen systems, non-crystalline, nano-structured and disordered systems, organic battery materials, and bulk vs. interface-limited batteries.
  •  
2.
  • Gogoi, Neeha (författare)
  • Elucidating Chemical and Electrochemical Side-Reaction Mechanisms in Li-ion Batteries
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lithium-ion batteries constitute a leading technology that plays a major role in the transition towards sustainable transportation and power generation. The stability of modern batteries relies on a passivation layer formed on the negative electrode known as the solid electrolyte interphase (SEI). Despite concerted efforts to comprehend the various processes taking place during SEI formation, monitoring the reaction pathways in real-time is still very challenging. This is due to the complex interactions within the multicomponent electrochemical system, aggravated by the wide range of electrolyte compositions, electrode materials, and operating conditions.In this thesis, operando surface enhanced Raman spectroscopy is explored to elucidate the progressive formation of the SEI on the negative electrode surface when the electrode is negatively polarised in a spectro-electrochemical cell. Complementary online-electrochemical mass spectrometry is employed to identify the associated gaseous products formed during the process. The work illustrates that the electrolyte as well as contaminants, such as O2, CO2, and H2O, contribute in electro-/chemical processes that build up the SEI. The thesis then explores reaction pathways involving a SEI-forming electrolyte additive, namely vinylene carbonate (VC), emphasizing its role as a H2O scavenging agent. In comparison to the conventional electrolyte solvent ethylene carbonate, VC exhibits a faster reaction with water impurities, particularly in presence of hydroxide ions. This results in the formation of products that are less likely to impact cell performance.In the later part, the thesis delves into understanding the stability of electrolyte in an environment of Lewis bases (LB) typically found in the SEI. For that, individual LB (e.g., OH- and OCH3-) are mixed with typical carbonate-based solvents and the products formed as a result of the reaction are analysed. Furthermore, tris(trimethylsilyl)phosphate (TMSPa), a representative of the silyl-functionalised electrolyte additive and known for its reactivity, especially towards fluorides, is used as a means to chemically probe its reactivity towards several LB residues. This investigation aims to establish a more simplified and generally applicable reaction mechanism thereof. The products that are soluble in the electrolyte have been investigated by nuclear magnetic resonance spectroscopy and those in the gas phase is characterised by mass spectrometry. The work highlights that the residues that remain active even after the SEI formation may lead to unwanted side-reactions.The thesis contributes to a deeper fundamental understanding of the myriad of processes that take place in batteries during SEI formation providing insights crucial for designing next-generation battery materials.
  •  
3.
  • Monti, Damien, et al. (författare)
  • Multivalent Batteries-Prospects for High Energy Density: Ca Batteries
  • 2019
  • Ingår i: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 7:FEB
  • Tidskriftsartikel (refereegranskat)abstract
    • Batteries based on Ca hold the promise to leapfrog ahead regarding increases in energy densities and are especially attractive as Ca is the 5th most abundant element in the Earth's crust. The viability of Ca metal anodes has recently been shown by approaches that either use wide potential window electrolytes at moderately elevated temperatures or THE-based electrolytes at room temperature. This paper provides realistic estimates of the practical energy densities for Ca-based rechargeable batteries at the cell level, calculated using open source models for several concepts. The results from the Ca metal anode batteries indicate that doubled or even tripled energy density as compared to the state-of-the-art Li-ion batteries is viable if a practical proof-of-concept can be achieved.
  •  
4.
  • Sobkowiak, Adam, 1985- (författare)
  • LiFeSO4F as a Cathode Material for Lithium-Ion Batteries : Synthesis, Structure, and Function
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In this thesis, two recently discovered polymorphs of LiFeSO4F, adopting a tavorite- and triplite-type structure, were investigated as potential candidates for use as cathode materials in Li-ion batteries. The studies aimed at enriching the fundamental understanding of the synthetic preparations, structural properties, and electrochemical functionality of these materials.By in situ synchrotron X-ray diffraction (XRD), the formation mechanism of the tavorite-type LiFeSO4F was followed starting from two different sets of precursors, FeSO4∙H2O + LiF, and Li2SO4 + FeF2. The results indicated that the formation of LiFeSO4F is possible only through the structurally related FeSO4∙H2O, in line with the generally recognized topotactic reaction mechanism. Moreover, an in-house solvothermal preparation of this polymorph was optimized with the combined use of XRD and Mössbauer spectroscopy (MS) to render phase pure and well-ordered samples. Additionally, the triplite-type LiFeSO4F was prepared using a facile high-energy ball milling procedure.The electrochemical performance of as-prepared tavorite LiFeSO4F was found to be severely restricted due to residual traces of the reaction medium (tetraethylene glycol (TEG)) on the surface of the synthesized particles. A significantly enhanced performance could be achieved by removing the TEG residues by thorough washing, and a subsequent application of an electronically conducting surface coating of p-doped PEDOT. The conducting polymer layer assisted the formation of a percolating network for efficient electron transport throughout the electrode, resulting in optimal redox behavior with low polarization and high capacity. In the preparation of cast electrodes suitable for use in commercial cells, reducing the electrode porosity was found to be a key parameter to obtain high-quality electrochemical performance. The triplite-type LiFeSO4F showed similar improvements upon PEDOT coating as the tavorite-type polymorph, but with lower capacity and less stable long-term cycling due to intrinsically sluggish kinetics and unfavorable particle morphology.Finally, the Li+-insertion/extraction process in tavorite LiFeSO4F was investigated. By thorough ex situ characterization of chemically and electrochemically prepared LixFeSO4F compositions (0≤x≤1), the formation of an intermediate phase, Li1/2FeSO4F, was identified for the first time. These findings helped redefine the (de)lithiation mechanism which occurs through two subsequent biphasic reactions, in contrast to a previously established single biphasic process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy