SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosberg Rebecca) "

Sökning: WFRF:(Rosberg Rebecca)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Golec, Ewelina, et al. (författare)
  • A cryptic non-GPI-anchored cytosolic isoform of CD59 controls insulin exocytosis in pancreatic β-cells by interaction with SNARE proteins
  • 2019
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - 1530-6860. ; 33:11, s. 12425-12434
  • Tidskriftsartikel (refereegranskat)abstract
    • CD59 is a glycosylphosphatidylinositol (GPI)-anchored cell surface inhibitor of the complement membrane attack complex (MAC). We showed previously that CD59 is highly expressed in pancreatic islets but is down-regulated in rodent models of diabetes. CD59 knockdown but not enzymatic removal of cell surface CD59 led to a loss of glucose-stimulated insulin secretion (GSIS), suggesting that an intracellular pool of CD59 is required. In this current paper, we now report that non-GPI-anchored CD59 is present in the cytoplasm, colocalizes with exocytotic protein vesicle-associated membrane protein 2, and completely rescues GSIS in cells lacking endogenous CD59 expression. The involvement of cytosolic non-GPI-anchored CD59 in GSIS is supported in phosphatidylinositol glycan class A knockout GPI anchor-deficient β-cells, in which GSIS is still CD59 dependent. Furthermore, site-directed mutagenesis demonstrated different structural requirements of CD59 for its 2 functions, MAC inhibition and GSIS. Our results suggest that CD59 is retrotranslocated from the endoplasmic reticulum to the cytosol, a process mediated by recognition of trimmed N-linked oligosaccharides, supported by the partial glycosylation of non-GPI-anchored cytosolic CD59 as well as the failure of N-linked glycosylation site mutant CD59 to reach the cytosol or rescue GSIS. This study thus proposes the previously undescribed existence of non-GPI-anchored cytosolic CD59, which is required for insulin secretion.-Golec, E., Rosberg, R., Zhang, E., Renström, E., Blom, A. M., King, B. C. A cryptic non-GPI-anchored cytosolic isoform of CD59 controls insulin exocytosis in pancreatic β-cells by interaction with SNARE proteins.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Pantazopoulou, Vasiliki, et al. (författare)
  • Hypoxia-Induced Reactivity of Tumor-Associated Astrocytes Affects Glioma Cell Properties
  • 2021
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioblastoma is characterized by extensive necrotic areas with surrounding hypoxia. The cancer cell response to hypoxia in these areas is well-described; it involves a metabolic shift and an increase in stem cell-like characteristics. Less is known about the hypoxic response of tumor-associated astrocytes, a major component of the glioma tumor microenvironment. Here, we used primary human astrocytes and a genetically engineered glioma mouse model to investigate the response of this stromal cell type to hypoxia. We found that astrocytes became reactive in response to intermediate and severe hypoxia, similarly to irradiated and temozolomide-treated astrocytes. Hypoxic astrocytes displayed a potent hypoxia response that appeared to be driven primarily by hypoxia-inducible factor 2-alpha (HIF-2α). This response involved the activation of classical HIF target genes and the increased production of hypoxia-associated cytokines such as TGF-β1, IL-3, angiogenin, VEGF-A, and IL-1 alpha. In vivo, astrocytes were present in proximity to perinecrotic areas surrounding HIF-2α expressing cells, suggesting that hypoxic astrocytes contribute to the glioma microenvironment. Extracellular matrix derived from hypoxic astrocytes increased the proliferation and drug efflux capability of glioma cells. Together, our findings suggest that hypoxic astrocytes are implicated in tumor growth and potentially stemness maintenance by remodeling the tumor microenvironment.
  •  
6.
  • Rosberg-Cody, Eva, et al. (författare)
  • Recombinant lactobacilli expressing linoleic acid isomerase can modulate the fatty acid composition of host adipose tissue in mice
  • 2011
  • Ingår i: Microbiology. - Berks, United Kingdom : Society for General Microbiology. - 1350-0872 .- 1465-2080. ; 157:2, s. 609-615
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously demonstrated that oral administration of a metabolically active Bifidobacterium breve strain, with ability to form cis-9, trans-11 conjugated linoleic acid (CLA), resulted in modulation of the fatty acid composition of the host, including significantly elevated concentrations of c9, t11 CLA and omega-3 (n-3) fatty acids in liver and adipose tissue. In this study, we investigated whether a recombinant lactobacillus expressing linoleic acid isomerase (responsible for production of t10, c12 CLA) from Propionibacterium acnes (PAI) could influence the fatty acid composition of different tissues in a mouse model. Linoleic-acid-supplemented diets (2 %, w/w) were fed in combination with either a recombinant t10, c12 CLA-producing Lactobacillus paracasei NFBC 338 (Lb338), or an isogenic (vector-containing) control strain, to BALB/c mice for 8 weeks. A third group of mice received linoleic acid alone (2 %, w/w). Tissue fatty acid composition was assessed by GLC at the end of the trial. Ingestion of the strain expressing linoleic acid isomerase was associated with a 4-fold increase (P<0.001) in t10, c12 CLA in adipose tissues of the mice when compared with mice that received the isogenic non-CLA-producing strain. The livers of the mice that received the recombinant CLA-producing Lb338 also contained a 2.5-fold (albeit not significantly) higher concentration of t10, c12 CLA, compared to the control group. These data demonstrate that a single gene (encoding linoleic acid isomerase) expressed in an intestinal microbe can influence the fatty acid composition of host fat.
  •  
7.
  • Tuysuz, Emre Can, et al. (författare)
  • Tumor suppressor role of the complement inhibitor CSMD1 and its role in TNF-induced neuroinflammation in gliomas
  • 2024
  • Ingår i: Journal of Experimental and Clinical Cancer Research. - 1756-9966. ; 43, s. 1-16
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The complement inhibitor CSMD1 acts as a tumor suppressor in various types of solid cancers. Despite its high level of expression in the brain, its function in gliomas, malignant brain tumors originating from glial cells, has not been investigated.METHODS: Three cohorts of glioma patients comprising 1500 patients were analyzed in our study along with their clinical data. H4, U-118 and U-87 cell lines were used to investigate the tumor suppressor function of CSMD1 in gliomas. PDGFB-induced brain tumor model was utilized for the validation of in vitro data.RESULTS: The downregulation of CSMD1 expression correlated with reduced overall and disease-free survival, elevated tumor grade, wild-type IDH genotype, and intact 1p/19q status. Moreover, enhanced activity was noted in the neuroinflammation pathway. Importantly, ectopic expression of CSMD1 in glioma cell lines led to decreased aggressiveness in vitro. Mechanically, CSMD1 obstructed the TNF-induced NF-kB and STAT3 signaling pathways, effectively suppressing the secretion of IL-6 and IL-8. There was also reduced survival in PDGFB-induced brain tumors in mice when Csmd1 was downregulated.CONCLUSIONS: Our study has identified CSMD1 as a tumor suppressor in gliomas and elucidated its role in TNF-induced neuroinflammation, contributing to a deeper understanding of glioma pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy