SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosenqvist Tage) "

Sökning: WFRF:(Rosenqvist Tage)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rosenqvist, Tage, et al. (författare)
  • Inoculation with adapted bacterial communities promotes development of full scale slow sand filters for drinking water production
  • 2024
  • Ingår i: Water Research. - 1879-2448. ; 253
  • Tidskriftsartikel (refereegranskat)abstract
    • Gravity-driven filtration through slow sand filters (SSFs) is one of the oldest methods for producing drinking water. As water passes through a sand bed, undesired microorganisms and chemicals are removed by interactions with SSF biofilm and its resident microbes. Despite their importance, the processes through which these microbial communities form are largely unknown, as are the factors affecting these processes. In this study, two SSFs constructed using different sand sources were compared to an established filter and observed throughout their maturation process. One SSF was inoculated through addition of sand scraped from established filters, while the other was not inoculated. The operational and developing microbial communities of SSFs, as well as their influents and effluents, were studied by sequencing of 16S ribosomal rRNA genes. A functional microbial community resembling that of the established SSF was achieved in the inoculated SSF, but not in the non-inoculated SSF. Notably, the non-inoculated SSF had significantly (p < 0.01) higher abundances of classes Armatimonadia, Elusimicrobia, Fimbriimonadia, OM190 (phylum Planctomycetota), Parcubacteria, Vampirivibrionia and Verrucomicrobiae. Conversely, it had lower abundances of classes Anaerolineae, Bacilli, bacteriap25 (phylum Myxococcota), Blastocatellia, Entotheonellia, Gemmatimonadetes, lineage 11b (phylum Elusimicrobiota), Nitrospiria, Phycisphaerae, subgroup 22 (phylum Acidobacteriota) and subgroup 11 (phylum Acidobacteriota). Poor performance of neutral models showed that the assembly and dispersal of SSF microbial communities was mainly driven by selection. The temporal turnover of microbial species, as estimated through the scaling exponent of the species-time relationship, was twice as high in the non-inoculated filter (0.946 ± 0.164) compared to the inoculated filter (0.422 ± 0.0431). This study shows that the addition of an inoculum changed the assembly processes within SSFs. Specifically, the rate at which new microorganisms were observed in the biofilm was reduced. The reduced temporal turnover may be driven by inoculating taxa inhibiting growth, potentially via secondary metabolite production. This in turn would allow the inoculation community to persist and contribute to SSF function.
  •  
2.
  • Rosenqvist, Tage, et al. (författare)
  • Succession of bacterial biofilm communities following removal of chloramine from a full-scale drinking water distribution system
  • 2023
  • Ingår i: npj Clean Water. - 2059-7037. ; 2023:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Monochloramine is used to regulate microbial regrowth in drinking water distribution systems (DWDS) but produces carcinogenic disinfection byproducts and constitutes a source of energy for nitrifying bacteria. This study followed biofilm-dispersed microbial communities of a full-scale DWDS distributing ultrafiltered water over three years, before and after removal of monochloramine. Communities were described using flow cytometry and amplicon sequencing, including full-length 16S rRNA gene sequencing. Removal of monochloramine increased total cell counts by up to 440%. Increased abundance of heterotrophic bacteria was followed by emergence of the predatory bacteria Bdellovibrio, and a community potentially metabolizing small organic compounds replaced the nitrifying core community. No increased abundance of Mycobacterium or Legionella was observed. Co-occurrence analysis identified a network of Nitrosomonas, Nitrospira, Sphingomonas and Hyphomicrobium, suggesting that monochloramine supported this biofilm community. While some species expanded into the changed niche, no immediate biological risk to consumers was indicated within the DWDS.
  •  
3.
  • Suarez, Carolina, et al. (författare)
  • Biofilm colonization and succession in a full-scale partial nitritation-anammox moving bed biofilm reactor
  • 2024
  • Ingår i: Microbiome. - 2049-2618. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Partial nitritation-anammox (PNA) is a biological nitrogen removal process commonly used in wastewater treatment plants for the treatment of warm and nitrogen-rich sludge liquor from anaerobic digestion, often referred to as sidestream wastewater. In these systems, biofilms are frequently used to retain biomass with aerobic ammonia-oxidizing bacteria (AOB) and anammox bacteria, which together convert ammonium to nitrogen gas. Little is known about how these biofilm communities develop, and whether knowledge about the assembly of biofilms in natural communities can be applied to PNA biofilms.RESULTS: We followed the start-up of a full-scale PNA moving bed biofilm reactor for 175 days using shotgun metagenomics. Environmental filtering likely restricted initial biofilm colonization, resulting in low phylogenetic diversity, with the initial microbial community comprised mainly of Proteobacteria. Facilitative priority effects allowed further biofilm colonization, with the growth of initial aerobic colonizers promoting the arrival and growth of anaerobic taxa like methanogens and anammox bacteria. Among the early colonizers were known 'oligotrophic' ammonia oxidizers including comammox Nitrospira and Nitrosomonas cluster 6a AOB. Increasing the nitrogen load in the bioreactor allowed colonization by 'copiotrophic' Nitrosomonas cluster 7 AOB and resulted in the exclusion of the initial ammonia- and nitrite oxidizers.CONCLUSIONS: We show that complex dynamic processes occur in PNA microbial communities before a stable bioreactor process is achieved. The results of this study not only contribute to our knowledge about biofilm assembly and PNA bioreactor start-up but could also help guide strategies for the successful implementation of PNA bioreactors. Video Abstract.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy