SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosenström Ulrika) "

Sökning: WFRF:(Rosenström Ulrika)

  • Resultat 1-10 av 54
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abouzayed, Ayman, et al. (författare)
  • 177Lu-labeled PSMA targeting therapeutic with optimized linker for treatment of disseminated prostate cancer; evaluation of biodistribution and dosimetry
  • 2023
  • Ingår i: Frontiers in Oncology. - : Frontiers Media S.A.. - 2234-943X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression in vivo using computer modeling. With the purpose to develop a targeting agent equally suitable for radionuclide imaging and therapy, the agent containing DOTA chelator was designed (BQ7876). The aim of the study was to test the hypothesis that Lu-177-labeled BQ7876 possesses target binding and biodistribution properties potentially enabling its use for radiotherapy.Methods: BQ7876 was synthesized and labeled with Lu-177. Specificity and affinity of [Lu-177]Lu-BQ7876 to PSMA-expressing PC3-pip cells was evaluated and its processing after binding to cells was studied. Animal studies in mice were performed to assess its biodistribution in vivo, target specificity and dosimetry. [Lu-177]Lu-PSMA-617 was simultaneously evaluated for comparison.Results: BQ7876 was labeled with Lu-177 with radiochemical yield >99%. Its binding to PSMA was specific in vitro and in vivo when tested in antigen saturation conditions as well as in PSMA-negative PC-3 tumors. The binding of [Lu-177]Lu-BQ7876 to living cells was characterized by rapid association, while the dissociation included a rapid and a slow phase with affinities K-D1 = 3.8 nM and K-D2 = 25 nM. The half-maximal inhibitory concentration for Lu-nat-BQ7876 was 59 nM that is equal to 61 nM for Lu-nat-PSMA-617. Cellular processing of [Lu-177]Lu-BQ7876 was accompanied by slow internalization. [Lu-177]Lu-BQ7876 was cleared from blood and normal tissues rapidly. Initial elevated uptake in kidneys decreased rapidly, and by 3 h post injection, the renal uptake (13 +/- 3%ID/g) did not differ significantly from tumor uptake (9 +/- 3%ID/g). Tumor uptake was stable between 1 and 3 h followed by a slow decline. The highest absorbed dose was in kidneys, followed by organs and tissues in abdomen.Discussion: Biodistribution studies in mice demonstrated that targeting properties of [Lu-177]Lu-BQ7876 are not inferior to properties of [Lu-177]Lu-PSMA-617, but do not offer any decisive advantages.
  •  
2.
  • Abouzayed, Ayman, et al. (författare)
  • Synthesis and Preclinical Evaluation of Radio-Iodinated GRPR/PSMA Bispecific Heterodimers for the Theranostics Application in Prostate Cancer
  • 2019
  • Ingår i: Pharmaceutics. - : MDPI AG. - 1999-4923 .- 1999-4923. ; 11:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastrin-releasing peptide receptor (GRPR) and prostate-specific membrane antigen (PSMA) are overexpressed in most prostate cancers. GRPR expression is higher in early stages while PSMA expression increases with progression. The possibility of targeting both markers with a single theranostics radiotracer could improve patient management. Three GRPR/PSMA-targeting bispecific heterodimers (urea derivative PSMA-617 and bombesin-based antagonist RM26 linked via X-triazolyl-Tyr-PEG2, X = PEG2 (BO530), (CH2)(8) (BO535), none (BO536)) were synthesized by solid-phase peptide synthesis. Peptides were radio-iodinated and evaluated in vitro for binding specificity, cellular retention, and affinity. In vivo specificity for all heterodimers was studied in PC-3 (GRPR-positive) and LNCaP (PSMA-positive) xenografts. [I-125]I-BO530 was evaluated in PC-3pip (GRPR/PSMA-positive) xenografts. Micro single-photon emission computed tomography/computed tomography (microSPECT/CT) scans were acquired. The heterodimers were radiolabeled with high radiochemical yields, bound specifically to both targets, and demonstrated high degree of activity retention in PC-3pip cells. Only [I-125]I-BO530 demonstrated in vivo specificity to both targets. A biodistribution study of [I-125]I-BO530 in PC-3pip xenografted mice showed high tumor activity uptake (30%-35%ID/g at 3 h post injection (pi)). Activity uptake in tumors was stable and exceeded all other organs 24 h pi. Activity uptake decreased only two-fold 72 h pi. The GRPR/PSMA-targeting heterodimer [I-125]I-BO530 is a promising agent for theranostics application in prostate cancer.
  •  
3.
  • Abouzayed, Ayman, 1992- (författare)
  • Theranostic Targeting of GRPR and PSMA in Prostate Cancer
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is based on five original articles that investigated the theranostics of prostate cancer by gastrin-releasing peptide receptor (GRPR) and prostate-specific membrane antigen (PSMA) targeting. GRPR and PSMA are two extensively evaluated prostate cancer cell markers due to their overexpression in the majority of prostate cancer samples. Theranostic targeting of GRPR and PSMA is an attractive strategy to improve the management of prostate cancer patients.Papers I and II focused on the dual targeting of GRPR and PSMA. The effect of linker modification on the affinity for GRPR and PSMA and the pharmacokinetic profile was evaluated. In Paper III, the effect of the GRPR antagonist RM26 conjugation to an albumin-binding domain on the pharmacokinetic profile and its potential use in therapy was investigated. Paper IV focused on developing a GRPR antagonist that was suitable for single-photon emission computed tomography (SPECT) using technetium-99m. In Paper V, the GRPR antagonist developed in Paper IV was translated into a phase I clinical trial to assess safety and dosimetry.Modifying the linkers in GRPR and PSMA heterodimers can largely impact the affinity for both targets. This modification influenced the in vivo targeting specificity and biodistribution, with [125I]I-BO530 in Paper I and [111In]In-BQ7812 in Paper II outperforming other analogues. Our findings in Paper III indicated that the conjugation of an albumin-binding domain to RM26 increased the blood concentration of the radiotracer. This increase led to elevated and stable tumour uptake of [111In]In-DOTA-ABD-RM26 after several days of injection. However, [111In]In-DOTA-ABD-RM26 was also increasingly taken up by various healthy organs. The GRPR antagonist [99mTc]Tc-maSSS-PEG2-RM26, studied in Paper IV, showed high specificity and affinity for GRPR. This resulted in elevated GRPR-mediated uptake. Additionally, maSSS-PEG2-RM26 could be radiolabelled via a straightforward radiolabelling protocol. Clinical evaluation of [99mTc]Tc-maSSS-PEG2-RM26 in prostate and breast cancer patients (Paper V) demonstrated the safety and tolerability of the radiotracer, with favourable dosimetry and no side effects.In conclusion, this thesis evaluated different tools for the theranostic targeting of GRPR and PSMA. The findings warrant further investigation to optimise the reported radiotracers.
  •  
4.
  • Bezverkhniaia, Ekaterina, et al. (författare)
  • Influence of Molecular Design on the Tumor Targeting and Biodistribution of PSMA-Binding Tracers Labeled with Technetium-99m
  • 2024
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 25:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Previously, we designed the EuK-based PSMA ligand BQ0413 with an maE3 chelator for labeling with technetium-99m. It showed efficient tumor targeting, but our preclinical data and preliminary clinical results indicated that the renal excretion levels need to be decreased. We hypothesized that this could be achieved by a decrease in the ligand's total negative charge, achieved by substituting negatively charged glutamate residues in the chelator with glycine. The purpose of this study was to evaluate the tumor targeting and biodistribution of two new PSMA inhibitors, BQ0411 and BQ0412, compared to BQ0413. Conjugates were radiolabeled with Tc-99m and characterized in vitro, using PC3-pip cells, and in vivo, using NMRI and PC3-pip tumor-bearing mice. [99mTc]Tc-BQ0411 and [99mTc]Tc-BQ0412 demonstrated PSMA-specific binding to PC3-pip cells with picomolar affinity. The biodistribution pattern for the new conjugates was characterized by rapid excretion. The tumor uptake for [99mTc]Tc-BQ0411 was 1.6-fold higher compared to [99mTc]Tc-BQ0412 and [99mTc]Tc-BQ0413. [99mTc]Tc-BQ0413 has demonstrated predominantly renal excretion, while the new conjugates underwent both renal and hepatobiliary excretion. In this study, we have demonstrated that in such small targeting ligands as PSMA-binding EuK-based pseudopeptides, the structural blocks that do not participate in binding could have a crucial role in tumor targeting and biodistribution. The presence of a glycine-based coupling linker in BQ0411 and BQ0413 seems to optimize biodistribution. In conclusion, the substitution of amino acids in the chelating sequence is a promising method to alter the biodistribution of [99mTc]Tc-labeled small-molecule PSMA inhibitors. Further improvement of the biodistribution properties of BQ0413 is needed.
  •  
5.
  • Bezverkhniaia, Ekaterina, et al. (författare)
  • Preclinical Evaluation of a Novel High-Affinity Radioligand [99mTc]Tc-BQ0413 Targeting Prostate-Specific Membrane Antigen (PSMA)
  • 2023
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067. ; 24:24
  • Tidskriftsartikel (refereegranskat)abstract
    • Radionuclide imaging using radiolabeled inhibitors of prostate-specific membrane antigen (PSMA) can be used for the staging of prostate cancer. Previously, we optimized the Glu-urea-Lys binding moiety using a linker structure containing 2-napththyl-L-alanine and L-tyrosine. We have now designed a molecule that contains mercaptoacetyl-triglutamate chelator for labeling with Tc-99m (designated as BQ0413). The purpose of this study was to evaluate the imaging properties of [Tc-99m]Tc-BQ0413. PSMA-transfected PC3-pip cells were used to evaluate the specificity and affinity of [Tc-99m]Tc-BQ0413 binding in vitro. PC3-pip tumor-bearing BALB/C nu/nu mice were used as an in vivo model. [Tc-99m]Tc-BQ0413 bound specifically to PC3-pip cells with an affinity of 33 +/- 15 pM. In tumor-bearing mice, the tumor uptake of [Tc-99m]Tc-BQ0413 (38 +/- 6 %IA/g in PC3-pip 3 h after the injection of 40 pmol) was dependent on PSMA expression (3 +/- 2 %IA/g and 0.9 +/- 0.3 %IA/g in PSMA-negative PC-3 and SKOV-3 tumors, respectively). We show that both unlabeled BQ0413 and the commonly used binder PSMA-11 enable the blocking of [Tc-99m]Tc-BQ0413 uptake in normal PSMA-expressing tissues without blocking the uptake in tumors. This resulted in an appreciable increase in tumor-to-organ ratios. At the same injected mass (5 nmol), the use of BQ0413 was more efficient in suppressing renal uptake than the use of PSMA-11. In conclusion, [Tc-99m]Tc-BQ0413 is a promising probe for the visualization of PSMA-positive lesions using single-photon emission computed tomography (SPECT).
  •  
6.
  • Borhade, Sanjay R, et al. (författare)
  • Inhibition of Insulin-Regulated Aminopeptidase (IRAP) by Arylsulfonamides
  • 2014
  • Ingår i: ChemistryOpen. - : Wiley. - 2191-1363. ; 3:6, s. 256-263
  • Tidskriftsartikel (refereegranskat)abstract
    • The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure-activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 μm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.
  •  
7.
  • Diwakarla, Shanti, et al. (författare)
  • Aryl Sulfonamide Inhibitors of Insulin-Regulated Aminopeptidase Enhance Spine Density in Primary Hippocampal Neuron Cultures
  • 2016
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 7:10, s. 1383-1392
  • Tidskriftsartikel (refereegranskat)abstract
    • The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of TRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors:A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.
  •  
8.
  • Diwakarla, Shanti, et al. (författare)
  • Binding to and Inhibition of Insulin-Regulated Aminopeptidase (IRAP) by Macrocyclic Disulfides Enhances Spine Density
  • 2016
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 89:4, s. 413-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin IV (Ang IV) and related peptide analogues, as well as non-peptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocylic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N-terminal of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09 and of Ang IV in either the extended or γ-turn conformation at the C-terminal to human IRAP were predicted by docking and molecular dynamics (MD) simulations. The binding free energies calculated with the linear interaction energy (LIE) method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
  •  
9.
  • Engen, Karin, et al. (författare)
  • Identification of Drug-Like Inhibitors of Insulin-Regulated Aminopeptidase Through Small-Molecule Screening
  • 2016
  • Ingår i: Assay and drug development technologies. - : Mary Ann Liebert Inc. - 1540-658X .- 1557-8127. ; 14:3, s. 180-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebroventricular injection of angiotensin IV, a ligand of insulin-regulated aminopeptidase (IRAP), has been shown to improve cognitive functions in several animal models. Consequently, IRAP is considered a potential target for treatment of cognitive disorders. To identify nonpeptidic IRAP inhibitors, we adapted an established enzymatic assay based on membrane preparations from Chinese hamster ovary cells and a synthetic peptide-like substrate for high-throughput screening purposes. The 384-well microplate-based absorbance assay was used to screen a diverse set of 10,500 compounds for their inhibitory capacity of IRAP. The assay performance was robust with Z-values ranging from 0.81 to 0.91, and the screen resulted in 23 compounds that displayed greater than 60% inhibition at a compound concentration of 10M. After hit confirmation experiments, purity analysis, and promiscuity investigations, three structurally different compounds were considered particularly interesting as starting points for the development of small-molecule-based IRAP inhibitors. After resynthesis, all three compounds confirmed low M activity and were shown to be rapidly reversible. Additional characterization included activity in a fluorescence-based orthogonal assay and in the presence of a nonionic detergent and a reducing agent, respectively. Importantly, the characterized compounds also showed inhibition of the human ortholog, prompting our further interest in these novel IRAP inhibitors.
  •  
10.
  • Engen, Karin, et al. (författare)
  • Inhibition of Insulin-Regulated Aminopeptidase by Imidazo[1,5-α]pyridines; Synthesis and Evaluation
  • 2024
  • Ingår i: International Journal of Molecular Sciences. - : MDPI. - 1661-6596 .- 1422-0067.
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibition of Insulin-regulated Aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign identifying novel small-molecule based compounds acting as inhibitors of the enzymatic activity IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of imidazo[1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an pIC50 values of 6.0. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound´s metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 54
Typ av publikation
tidskriftsartikel (50)
doktorsavhandling (3)
annan publikation (1)
Typ av innehåll
refereegranskat (40)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Rosenström, Ulrika (51)
Tolmachev, Vladimir (21)
Larhed, Mats (20)
Mitran, Bogdan (17)
Orlova, Anna, 1960- (16)
Eriksson, Olof (12)
visa fler...
Lindeberg, Gunnar (12)
Rinne, Sara S. (10)
Velikyan, Irina (10)
Abouzayed, Ayman (9)
Hallberg, Anders (7)
Jenmalm Jensen, Anni ... (7)
Antoni, Gunnar (6)
Lundmark, Fanny (6)
Orlova, Anna (6)
Nyberg, Fred (6)
Karlén, Anders (6)
Velikyan, Irina, 196 ... (6)
Varasteh, Zohreh (6)
Rosestedt, Maria (6)
Botros, Milad (6)
Lundbäck, Thomas (5)
Sävmarker, Jonas (5)
Sköld, Christian (5)
Hallberg, Mathias (5)
Sörensen, Jens (4)
Oroujeni, Maryam, Ph ... (4)
Gutierrez-de-Teran, ... (4)
Selvaraju, Ram Kumar (4)
Vorobyeva, Anzhelika (4)
Konda, Vivek (4)
Altai, Mohamed (3)
Kanellopoulos, Panag ... (3)
Åqvist, Johan (3)
Gallo-Payet, Nicole (3)
Bezverkhniaia, Ekate ... (3)
Lubberink, Mark (2)
Axelsson, Hanna (2)
Wallinder, Charlotta (2)
Nylander, Erik (2)
Estrada, Sergio (2)
Wannberg, Johan (2)
Hallberg, Mathias, 1 ... (2)
Reddy Vanga, Sudarsa ... (2)
Thisgaard, Helge (2)
Sigmundsson, Kristmu ... (2)
Diwakarla, Shanti (2)
Espes, Daniel (2)
Grönbladh, Alfhild (2)
Vanga, Sudarsana Red ... (2)
visa färre...
Lärosäte
Uppsala universitet (54)
Karolinska Institutet (8)
Kungliga Tekniska Högskolan (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (54)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (46)
Naturvetenskap (4)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy