SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosinska Dorota) "

Sökning: WFRF:(Rosinska Dorota)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Barack, Leor, et al. (författare)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Forskningsöversikt (refereegranskat)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
2.
  • Maliszewski, Konrad, et al. (författare)
  • MOCCA-SURVEY data base II – Properties of intermediate mass black holes escaping from star clusters
  • 2022
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 514:4, s. 5879-5889
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we investigate properties of intermediate-mass black holes (IMBHs) that escape from star clusters due to dynamical interactions. The studied models were simulated as part of the preliminary second survey carried out using the MOCCA code (MOCCA-SURVEY Database II), which is based on the Monte Carlo N-body method and does not include gravitational wave recoil kick prescriptions of the binary black hole merger product. We have found that IMBHs are more likely to be formed and ejected in models where both initial central density and central escape velocities have high values. Most of our studied objects escape in a binary with another black hole (BH) as their companion and have masses between 100 and 140 M⊙⁠. Escaping IMBHs tend to build-up mass most effectively through repeated mergers in a binary with BHs due to gravitational wave emission. Binaries play a key role in their ejection from the system as they allow these massive objects to gather energy needed for escape. The binaries in which IMBHs escape tend to have very high binding energy at the time of escape and the last interaction is strong but does not involve a massive intruder. These IMBHs gain energy needed to escape the cluster gradually in successive dynamical interactions. We present specific examples of the history of IMBH formation and escape from star cluster models. We also discuss the observational implications of our findings as well as the potential influence of the gravitational wave recoil kicks on the process.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy