SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosswog Stephan K.) "

Sökning: WFRF:(Rosswog Stephan K.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ackley, K., et al. (författare)
  • Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger candidate S190814bv
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 643
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Gravitational wave (GW) astronomy has rapidly reached maturity, becoming a fundamental observing window for modern astrophysics. The coalescences of a few tens of black hole (BH) binaries have been detected, while the number of events possibly including a neutron star (NS) is still limited to a few. On 2019 August 14, the LIGO and Virgo interferometers detected a high-significance event labelled S190814bv. A preliminary analysis of the GW data suggests that the event was likely due to the merger of a compact binary system formed by a BH and a NS.Aims. In this paper, we present our extensive search campaign aimed at uncovering the potential optical and near infrared electromagnetic counterpart of S190814bv. We found no convincing electromagnetic counterpart in our data. We therefore use our non-detection to place limits on the properties of the putative outflows that could have been produced by the binary during and after the merger.Methods. Thanks to the three-detector observation of S190814bv, and given the characteristics of the signal, the LIGO and Virgo Collaborations delivered a relatively narrow localisation in low latency - a 50% (90%) credible area of 5 deg(2) (23 deg(2)) - despite the relatively large distance of 26752 Mpc. ElectromagNetic counterparts of GRAvitational wave sources at the VEry Large Telescope collaboration members carried out an intensive multi-epoch, multi-instrument observational campaign to identify the possible optical and near infrared counterpart of the event. In addition, the ATLAS, GOTO, GRAWITA-VST, Pan-STARRS, and VINROUGE projects also carried out a search on this event. In this paper, we describe the combined observational campaign of these groups.Results. Our observations allow us to place limits on the presence of any counterpart and discuss the implications for the kilonova (KN), which was possibly generated by this NS-BH merger, and for the strategy of future searches. The typical depth of our wide-field observations, which cover most of the projected sky localisation probability (up to 99.8%, depending on the night and filter considered), is r similar to 22 (resp. K similar to 21) in the optical (resp. near infrared). We reach deeper limits in a subset of our galaxy-targeted observations, which cover a total similar to 50% of the galaxy-mass-weighted localisation probability. Altogether, our observations allow us to exclude a KN with large ejecta mass M greater than or similar to 0.1 M-circle dot to a high (> 90%) confidence, and we can exclude much smaller masses in a sub-sample of our observations. This disfavours the tidal disruption of the neutron star during the merger.Conclusions. Despite the sensitive instruments involved in the campaign, given the distance of S190814bv, we could not reach sufficiently deep limits to constrain a KN comparable in luminosity to AT 2017gfo on a large fraction of the localisation probability. This suggests that future (likely common) events at a few hundred megaparsecs will be detected only by large facilities with both a high sensitivity and large field of view. Galaxy-targeted observations can reach the needed depth over a relevant portion of the localisation probability with a smaller investment of resources, but the number of galaxies to be targeted in order to get a fairly complete coverage is large, even in the case of a localisation as good as that of this event.
  •  
2.
  • Evans, P. A., et al. (författare)
  • Swift and NuSTAR observations of GW170817 : Detection of a blue kilonova
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1565-1569
  • Tidskriftsartikel (refereegranskat)abstract
    • With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counter part of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (approximate to 0.03 solar masses) wind-driven outflow with moderate electron fraction (Y-e approximate to 0.27). Combined with the x-ray limits, we favor an observer viewing angle of approximate to 30 degrees away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a gamma-ray burst afterglow).
  •  
3.
  • Kasliwal, M. M., et al. (författare)
  • Illuminating gravitational waves : A concordant picture of photons from a neutron star merger
  • 2017
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 358:6370, s. 1559-
  • Tidskriftsartikel (refereegranskat)abstract
    • Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.
  •  
4.
  • Lamb, G. P., et al. (författare)
  • Short GRB 160821B : A Reverse Shock, a Refreshed Shock, and a Well-sampled Kilonova
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 883:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report our identification of the optical afterglow and host galaxy of the short-duration gamma-ray burst sGRB 160821B. The spectroscopic redshift of the host is z = 0.162, making it one of the lowest redshift short-duration gamma-ray bursts (sGRBs) identified by Swift. Our intensive follow-up campaign using a range of ground-based facilities as well as Hubble Space Telescope, XMM-Newton, and Swift, shows evidence for a late-time excess of optical and near-infrared emission in addition to a complex afterglow. The afterglow light curve at X-ray frequencies reveals a narrow jet, theta(j) similar to 1.9(-0.03)(+0.10) deg, that is refreshed at >1 day post-burst by a slower outflow with significantly more energy than the initial outflow that produced the main GRB. Observations of the 5 GHz radio afterglow shows a reverse shock into a mildly magnetized shell. The optical and near-infrared excess is fainter than AT2017gfo associated with GW170817, and is well explained by a kilonova with dynamic ejecta mass M-dyn = (1.0 +/- 0.6) x 10(-3) M-circle dot and a secular (post-merger) ejecta mass with M-pm = (1.0 +/- 0.6) x 10(-2) M-circle dot, consistent with a binary neutron star merger resulting in a short-lived massive neutron star. This optical and near-infrared data set provides the best-sampled kilonova light curve without a gravitational wave trigger to date.
  •  
5.
  • Farouqi, K., et al. (författare)
  • Correlations of r-process elements in very metal-poor stars as clues to their nucleosynthesis sites
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. Various nucleosynthesis studies have pointed out that the r-process elements in very metal-poor (VMP) halo stars might have different origins. By means of familiar concepts from statistics (correlations, cluster analysis, and rank tests of elemental abundances), we look for causally correlated elemental abundance patterns and attempt to link them to astrophysical events. Some of these events produce the r-process elements jointly with iron, while others do not have any significant iron contribution. We try to (a) characterize these different types of events by their abundance patterns and (b) identify them among the existing set of suggested r-process sites.Methods. The Pearson and Spearman correlation coefficients were used in order to investigate correlations among r-process elements (X,Y) as well as their relation to iron (Fe) in VMP halo stars. We gradually tracked the evolution of those coefficients in terms of the element enrichments [X/Fe] or [X/Y] and the metallicity [Fe/H]. This approach, aided by cluster analysis to find different structures of abundance patterns and rank tests to identify whether several events contributed to the observed pattern, is new and provides deeper insights into the abundances of VMP stars.Results. In the early stage of our Galaxy, at least three r-process nucleosynthesis sites have been active. The first two produce and eject iron and the majority of the lighter r-process elements. We assign them to two different types of core-collapse events, not identical to regular core-collapse supernovae (CCSNe), which produce only light trans-Fe elements. The third category is characterized by a strong r-process and is responsible for the major fraction of the heavy main r-process elements without a significant coproduction of Fe. It does not appear to be connected to CCSNe, in fact most of the Fe found in the related r-process enriched stars must come from previously occurring CCSNe. The existence of actinide boost stars indicates a further division among strong r-process sites. We assign these two strong r-process sites to neutron star mergers without fast black hole formation and to events where the ejecta are dominated by black hole accretion disk outflows. Indications from the lowest-metallicity stars hint at a connection with massive single stars (collapsars) forming black holes in the early Galaxy.
  •  
6.
  • Eichler, M., et al. (författare)
  • THE ROLE OF FISSION IN NEUTRON STAR MERGERS AND ITS IMPACT ON THE r-PROCESS PEAKS
  • 2015
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 808:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Comparing observational abundance features with nucleosynthesis predictions of stellar evolution or explosion simulations, we can scrutinize two aspects: (a) the conditions in the astrophysical production site and (b) the quality of the nuclear physics input utilized. We test the abundance features of r-process nucleosynthesis calculations for the dynamical ejecta of neutron star merger simulations based on three different nuclear mass models: The Finite Range Droplet Model, the (quenched version of the) Extended Thomas Fermi Model with Strutinsky Integral, and the Hartree-Fock-Bogoliubov mass model. We make use of corresponding fission barrier heights and compare the impact of four different fission fragment distribution models on the final r-process abundance distribution. In particular, we explore the abundance distribution in the second r-process peak and the rare-earth sub-peak as a function of mass models and fission fragment distributions, as well as the origin of a shift in the third r-process peak position. The latter has been noticed in a number of merger nucleosynthesis predictions. We show that the shift occurs during the r-process freeze-out when neutron captures and beta-decays compete and an (n,gamma)-(gamma,n) equilibrium is no longer maintained. During this phase neutrons originate mainly from fission of material above A = 240. We also investigate the role of beta-decay half-lives from recent theoretical advances, which lead either to a smaller amount of fissioning nuclei during freeze-out or a faster (and thus earlier) release of fission neutrons, which can (partially) prevent this shift and has an impact on the second and rare-earth peak as well.
  •  
7.
  • Tanvir, N. R., et al. (författare)
  • The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 848:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A). The evolution of the transient light is consistent with predictions for the behavior of a kilonova/ macronova powered by the radioactive decay of massive neutron-rich nuclides created via r-process nucleosynthesis in the neutron-star ejecta. In particular, evidence for this scenario is found from broad features seen in Hubble Space Telescope infrared spectroscopy, similar to those predicted for lanthanide-dominated ejecta, and the much slower evolution in the near-infrared K-s-band compared to the optical. This indicates that the late-time light is dominated by high-opacity lanthanide-rich ejecta, suggesting nucleosynthesis to the third r-process peak (atomic masses A approximate to 195). This discovery confirms that neutron-star mergers produce kilo-/macronovae and that they are at least a major-if not the dominant-site of rapid neutron capture nucleosynthesis in the universe.
  •  
8.
  • Ahrens, Maryon, et al. (författare)
  • Multi-messenger Observations of a Binary Neutron Star Merger
  • 2017
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 848:2
  • Tidskriftsartikel (refereegranskat)abstract
    • On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of similar to 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40(-8)(+8) Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M-circle dot. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at similar to 40 Mpc) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over similar to 10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position similar to 9 and similar to 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
  •  
9.
  • Barack, Leor, et al. (författare)
  • Black holes, gravitational waves and fundamental physics : a roadmap
  • 2019
  • Ingår i: Classical and quantum gravity. - : IOP Publishing. - 0264-9381 .- 1361-6382. ; 36:14
  • Forskningsöversikt (refereegranskat)abstract
    • The grand challenges of contemporary fundamental physics dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'.
  •  
10.
  • Eyles, R. A. J., et al. (författare)
  • An unusual transient following the short GRB 071227
  • 2019
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 489:1, s. 13-27
  • Tidskriftsartikel (refereegranskat)abstract
    • We present X-ray and optical observations of the short duration gamma-ray burst GRB 071227 and its host at z= 0.381, obtained using Swift, Gemini South, and theVery Large Telescope. We identify a short-lived and moderately bright optical transient, with flux significantly in excess of that expected from a simple extrapolation of the X-ray spectrum at 0.2-0.3 d after burst. We fit the SED with afterglow models allowing for high extinction and thermal emission models that approximate a kilonova to assess the excess' origins. While some kilonova contribution is plausible, it is not favoured due to the low temperature and high luminosity required, implying superluminal expansion and a large ejectamass of similar to 0.1 M-circle dot. We find, instead, that the transient is broadly consistent with power-law spectra with additional dust extinction of E(B - V) similar to 0.4 mag, although a possibly thermal excess remains in the z band. We investigate the host, a spiral galaxy with an edge-on orientation, resolving its spectrum along its major axis to construct the galaxy rotation curve and analyse the star formation and chemical properties. The integrated host emission shows evidence for high extinction, consistent with the afterglow findings. The metallicity and extinction are consistent with previous studies of this host and indicate the galaxy is a typical, but dusty, late-type SGRB host.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy