SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rosvall Martin Universitetslektor) "

Sökning: WFRF:(Rosvall Martin Universitetslektor)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bohlin, Ludvig, 1986- (författare)
  • Toward higher-order network models
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Complex systems play an essential role in our daily lives. These systems consist of many connected components that interact with each other. Consider, for example, society with billions of collaborating individuals, the stock market with numerous buyers and sellers that trade equities, or communication infrastructures with billions of phones, computers and satellites.The key to understanding complex systems is to understand the interaction patterns between their components - their networks. To create the network, we need data from the system and a model that organizes the given data in a network representation. Today's increasing availability of data and improved computational capacity for analyzing networks have created great opportunities for the network approach to further prosper. However, increasingly rich data also gives rise to new challenges that question the effectiveness of the conventional approach to modeling data as a network. In this thesis, we explore those challenges and provide methods for simplifying and highlighting important interaction patterns in network models that make use of richer data.Using data from real-world complex systems, we first show that conventional network modeling can provide valuable insights about the function of the underlying system. To explore the impact of using richer data in the network representation, we then expand the analysis for higher-order models of networks and show why we need to go beyond conventional models when there is data that allows us to do so. In addition, we also present a new framework for higher-order network modeling and analysis. We find that network models that capture richer data can provide more accurate representations of many real-world complex systems.
  •  
2.
  • Holmgren, Anton, 1982- (författare)
  • Mapping higher-order dynamics and interactions in complex networks
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Complex systems research seeks to explain emergent properties in social, technological, and biological systems that result from interactions between their components. As data on the intricate relationships within these systems become increasingly available, there is a growing need for more sophisticated models to describe them accurately and offer deeper insights.This thesis addresses challenges in incorporating higher-order interactions and dynamics into the analysis of complex systems that go beyond standard network approaches. It covers mapping changing network organizations, modeling higher-order dynamics on ordinary networks, integrating network structure and metadata, and modeling multibody interactions. The thesis offers new tools and models to enhance our understanding of how higher-order dynamics and interactions shape the organization and give rise to the function of complex systems by providing more accurate representations than traditional network models. These findings pave the way for new research in network science.
  •  
3.
  • Mirshahvalad, Atieh, 1983- (författare)
  • Organization of information pathways in complex networks
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A shuman beings, we are continuously struggling to comprehend the mechanism of dierent natural systems. Many times, we face a complex system where the emergent properties of the system at a global level can not be explained by a simple aggregation of the system's components at the micro-level. To better understand the macroscopic system eects, we try to model microscopic events and their interactions. In order to do so, we rely on specialized tools to connect local mechanisms with global phenomena. One such tool is network theory. Networks provide a powerful way of modeling and analyzing complex systems based on interacting elements. The interaction pattern links the elements of the system together and provides a structure that controls how information permeates throughout the system. For example, the passing of information about job opportunities in a society depends on how social ties are organized. The interaction pattern, therefore, often is essential for reconstructing and understanding the global-scale properties of the system.In this thesis, I describe tools and models of network theory that we use and develop to analyze the organization of social or transportation systems. More specifically, we explore complex networks by asking two general questions: First, which mechanistic theoretical models can better explain network formation or spreading processes on networks? And second, what are the signi cant functional units of real networks? For modeling, for example, we introduce a simple agent-based model that considers interacting agents in dynamic networks that in the quest for information generate groups. With the model, we found that the network and the agents' perception are interchangeable; the global network structure and the local information pathways are so entangled that one can be recovered from the other one. For investigating signi cant functional units of a system, we detect, model, and analyze signi cant communities of the network. Previously introduced methods of significance analysis suer from oversimpli ed sampling schemes. We have remedied their shortcomings by proposing two dierent approaches: rst by introducing link prediction and second by using more data when they are available. With link prediction, we can detect statistically signi cant communities in large sparse networks. We test this method on real networks, the sparse network of the European Court of Justice case law, for example, to detect signi cant and insigni cant areas of law. In the presence of large data, on the other hand, we can investigate how underlying assumptions of each method aect the results of the signi cance analysis. We used this approach to investigate dierent methods for detecting signi cant communities of time-evolving networks. We found that, when we highlight and summarize important structural changes in a network, the methods that maintain more dependencies in signi cance analysis can predict structural changes earlier.In summary, we have tried to model the systems with as simple rules as possible to better understand the global properties of the system. We always found that maintaing information about the network structure is essential for explaining important phenomena on the global scale. We conclude that the interaction pattern between interconnected units, the network, is crucial for understanding the global behavior of complex systems because it keeps the system integrated. And remember, everything is connected, albeit not always directly.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy