SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roulet T. J.) "

Sökning: WFRF:(Roulet T. J.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Delios, A., et al. (författare)
  • Examining the generalizability of research findings from archival data
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:30
  • Tidskriftsartikel (refereegranskat)abstract
    • This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability-for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples. 
  •  
3.
  • Yi, Chuixiang, et al. (författare)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
4.
  • McGuire, A.D., et al. (författare)
  • Sensitivity of the carbon cycle in the Arctic to climate change
  • 2009
  • Ingår i: Ecological Monographs. - : Wiley. - 0012-9615. ; 79:4, s. 523-555
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a comprehensive review of the status of the contemporary carbon cycle of the Arctic and its response to climate change. This review is designed to clarify key uncertainties and vulnerabilities in the response of the carbon cycle of the Arctic to ongoing climatic change. While it is clear that there are substantial stocks of carbon in the Arctic, there are also significant uncertainties associated with the magnitude of organic matter stocks contained in permafrost and the storage of methane hydrates beneath both subterranean and submerged permafrost of the Arctic. In the context of the global carbon cycle, this review demonstrates that the Arctic plays an important role in the global dynamics of both CO2 and CH4. Studies suggest that the Arctic has been a sink for atmospheric CO2 of between 0 and 0.8 Pg C/yr in recent decades, which is between 0% and 25% of the global net land/ocean flux during the 1990s. The Arctic is a substantial source of CH4 to the atmosphere (between 32 and 112 Tg CH4/yr), primarily because of the large area of wetlands throughout the region. Analyses to date indicate that the sensitivity of the carbon cycle of the Arctic during the remainder of the 21st century is highly uncertain. To improve the capability to assess the sensitivity of the carbon cycle of the Arctic to projected climate change, we recommend that (1) integrated regional studies be conducted to link observations of carbon dynamics to the processes that are likely to influence those dynamics, and (2) the understanding gained from these integrated studies be incorporated into both uncoupled and fully coupled carbon–climate modeling efforts.
  •  
5.
  • Petrescu, Ana Maria Roxana, et al. (författare)
  • The uncertain climate footprint of wetlands under human pressure
  • 2015
  • Ingår i: Proceedings of the National Academy of Sciences. - : Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 112:15, s. 4594-4599
  • Tidskriftsartikel (refereegranskat)abstract
    • Significant climate risks are associated with a positive carbon-temperature feedback in northern latitude carbon-rich ecosystems, making an accurate analysis of human impacts on the net greenhouse gas balance of wetlands a priority. Here, we provide a coherent assessment of the climate footprint of a network of wetland sites based on simultaneous and quasi-continuous ecosystem observations of CO2 and CH4 fluxes. Experimental areas are located both in natural and in managed wetlands and cover a wide range of climatic regions, ecosystem types, and management practices. Based on direct observations we predict that sustained CH4 emissions in natural ecosystems are in the long term (i.e., several centuries) typically offset by CO2 uptake, although with large spatiotemporal variability. Using a space-for-time analogy across ecological and climatic gradients, we represent the chronosequence from natural to managed conditions to quantify the "cost" of CH4 emissions for the benefit of net carbon sequestration. With a sustained pulse-response radiative forcing model, we found a significant increase in atmospheric forcing due to land management, in particular for wetland converted to cropland. Our results quantify the role of human activities on the climate footprint of northern wetlands and call for development of active mitigation strategies for managed wetlands and new guidelines of the Intergovernmental Panel on Climate Change (IPCC) accounting for both sustained CH4 emissions and cumulative CO2 exchange.
  •  
6.
  • MZOBE, Pearl, et al. (författare)
  • Dissolved organic carbon in streams within a subarctic catchment analysed using a GIS/remote sensing approach
  • 2018
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Climate change projections show that temperature and precipitation increases can alter the exchange of greenhouse gases between the atmosphere and high latitude landscapes, including their freshwaters. Dissolved organic carbon (DOC) plays an important role in greenhouse gas emissions, but the impact of catchment productivity on DOC release to subarctic waters remains poorly known, especially at regional scales. We test the hypothesis that increased terrestrial productivity, as indicated by the normalized difference vegetation index (NDVI), generates higher stream DOC concentrations in the Stordalen catchment in subarctic Sweden. Furthermore, we aimed to determine the degree to which other generic catchment properties (elevation, slope) explain DOC concentration, and whether or not land cover variables representing the local vegetation type (e.g., mire, forest) need to be included to obtain adequate predictive models for DOC delivered into rivers. We show that the land cover type, especially the proportion of mire, played a dominant role in the catchment's release of DOC, while NDVI, slope, and elevation were supporting predictor variables. The NDVI as a single predictor showed weak and inconsistent relationships to DOC concentrations in recipient waters, yet NDVI was a significant positive regulator of DOC in multiple regression models that included land cover variables. Our study illustrates that vegetation type exerts primary control in DOC regulation in Stordalen, while productivity (NDVI) is of secondary importance. Thus, predictive multiple linear regression models for DOC can be utilized combining these different types of explanatory variables.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy