SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Round J) "

Sökning: WFRF:(Round J)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  • Echelmeier, A., et al. (författare)
  • Segmented flow generator for serial crystallography at the European X-ray free electron laser
  • 2020
  • Ingår i: Nature Communications. - : Nature Research. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported. 
  •  
3.
  • Aleksich, Mariya, et al. (författare)
  • XFEL Microcrystallography of Self-Assembling Silver n-Alkanethiolates
  • 2023
  • Ingår i: Journal of the American Chemical Society. - 0002-7863. ; 145:31, s. 17042-17055
  • Tidskriftsartikel (refereegranskat)abstract
    • New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.833 Å) is employed to characterize microcrystalline silver n-alkanethiolates with various alkyl chain lengths at X-ray free electron laser facilities, resolving long-standing controversies regarding the atomic connectivity and odd-even effects of layer stacking. smSFX provides high-quality crystal structures directly from the powder of the true unknowns, a capability that is particularly useful for systems having notoriously small or defective crystals. We present crystal structures of silver n-butanethiolate (C4), silver n-hexanethiolate (C6), and silver n-nonanethiolate (C9). We show that an odd-even effect originates from the orientation of the terminal methyl group and its role in packing efficiency. We also propose a secondary odd-even effect involving multiple mosaic blocks in the crystals containing even-numbered chains, identified by selected-area electron diffraction measurements. We conclude with a discussion of the merits of the synthetic preparation for the preparation of microdiffraction specimens and compare the long-range order in these crystals to that of self-assembled monolayers.
  •  
4.
  • Konold, Patrick E., et al. (författare)
  • 3D-printed sheet jet for stable megahertz liquid sample delivery at X-ray free-electron lasers
  • 2023
  • Ingår i: IUCrJ. - : International Union Of Crystallography. - 2052-2525. ; 10, s. 662-670
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.
  •  
5.
  • Sobolev, Egor, et al. (författare)
  • Megahertz single-particle imaging at the European XFEL
  • 2020
  • Ingår i: Communications Physics. - : Springer Science and Business Media LLC. - 2399-3650. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of high repetition-rate X-ray free-electron lasers (XFELs) powered by superconducting accelerator technology enables the measurement of significantly more experimental data per day than was previously possible. The European XFEL is expected to provide 27,000 pulses per second, over two orders of magnitude more than any other XFEL. The increased pulse rate is a key enabling factor for single-particle X-ray diffractive imaging, which relies on averaging the weak diffraction signal from single biological particles. Taking full advantage of this new capability requires that all experimental steps, from sample preparation and delivery to the acquisition of diffraction patterns, are compatible with the increased pulse repetition rate. Here, we show that single-particle imaging can be performed using X-ray pulses at megahertz repetition rates. The results obtained pave the way towards exploiting high repetition-rate X-ray free-electron lasers for single-particle imaging at their full repetition rate.
  •  
6.
  • Brennich, Martha, et al. (författare)
  • Nanoparticle Characterization Methods : Applications of Synchrotron and Neutron Radiation
  • 2016
  • Ingår i: Pharmaceutical Nanotechnology. - Weinheim, Germany : John Wiley & Sons. - 9783527340545 - 9783527800681 ; , s. 157-174
  • Bokkapitel (refereegranskat)abstract
    • The characterization of materials at the atomic-, nano-, and microscales is of crucial importance in understanding and then tailoring their macroscale properties and function for end-use applications and for effective modern cradle-to-reuse materials cycling. Synchrotron light, as well as the complementary neutron beams, offer exquisite microscopy probes to look into the heart of materials. This chapter presents some examples of pharma-oriented nanoparticle characterization highlighting the possibilities of synchrotron light and neutron beams. Small-angle X-ray scattering (SAXS) is a well-established technique to probe nanoscale structures. SAXS can also deliver valuable information on the structure of self-assembled nanovectors, such as liposomes, which are recognized as efficient platforms for drug delivery. Future developments for neutron characterization will be driven in parallel with instrumental developments at existing sources and future facilities such as the European Spallation Source (ESS) being built in Sweden.  
  •  
7.
  • Round, P D, et al. (författare)
  • Lost and found: the enigmatic large-billed reed warbler Acrocephalus orinus rediscovered after 139 years
  • 2007
  • Ingår i: Journal of Avian Biology. - : Wiley. - 0908-8857. ; 38:2, s. 133-138
  • Tidskriftsartikel (refereegranskat)abstract
    • We present compelling evidence of the continued existence of the large-billed reed warbler Acrocephalus orinus, hitherto known only from the unique type specimen collected in NW India 139 years ago. Morphological and genetic analyses of an unusual Acrocephalus warbler mist-netted south-west of Bangkok, Thailand, on 27 March 2006, confirmed its identity as A. orinus, and revealed that it was heterozygous at four out of eight microsatellite markers, indicating the continued existence of a viable population whose breeding and wintering areas are still unknown.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy