SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roussos Elias) "

Sökning: WFRF:(Roussos Elias)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arridge, Christopher S., et al. (författare)
  • Uranus Pathfinder : exploring the origins and evolution of Ice Giant planets
  • 2012
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 753-791
  • Tidskriftsartikel (refereegranskat)abstract
    • The "Ice Giants" Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA's Cosmic Vision 2015-2025. UP was proposed to the European Space Agency's M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz-Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036-2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.
  •  
2.
  • Futaana, Yoshifumi, et al. (författare)
  • Corotation Plasma Environment Model : An Empirical Probability Model of the Jovian Magnetosphere
  • 2018
  • Ingår i: IEEE Transactions on Plasma Science. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0093-3813 .- 1939-9375. ; 46:6, s. 2126-2145
  • Tidskriftsartikel (refereegranskat)abstract
    • We developed a new empirical model for corotating plasma in the Jovian magnetosphere. The model, named the corotation plasma environment model version 2 (CPEMv2), considers the charge density, velocity vector, and ion temperature based on Galileo/plasma system (PLS) ion data. In addition, we develop hot electron temperature and density models based on Galileo/PLS electron data. All of the models provide respective quantities in the magnetic equator plane of 9-30RJ, while the charge density model can be extended to 3-D space. A characteristic feature of the CPEM is its support of the percentile as a user input. This feature enables us to model extreme conditions in addition to normal states. In this paper, we review the foundations of the new empirical model, present a general derivation algorithm, and offer a detailed formulation of each parameter of the CPEMv2. As all CPEM parameters are of the analytical form, their implementation is straightforward, and execution involves the use of a small number of computational resources. The CPEM is flexible; for example, it can be extended, as new data (from observations or simulation results) become available. The CPEM can be used for the mission operation of the European Space Agency's mission to Jupiter, JUpiter ICy moons Explorer (JUICE), and for future data analyses.
  •  
3.
  • Khurana, Krishan K., et al. (författare)
  • The role of plasma slowdown in the generation of Rhea's Alfvén wings
  • 2017
  • Ingår i: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 122:2, s. 1778-1788
  • Tidskriftsartikel (refereegranskat)abstract
    • Alfvén wings are known to form when a conducting or mass-loading object slows down a flowing plasma in its vicinity. Alfvén wings are not expected to be generated when an inert moon such as Rhea interacts with Saturn's magnetosphere, where the plasma impacting the moon is absorbed and the magnetic flux passes unimpeded through the moon. However, in two close polar passes of Rhea, Cassini clearly observed magnetic field signatures consistent with Alfvén wings. In addition, observations from a high-inclination flyby (Distance > 100 R Rh ) of Rhea on 3 June 2010 showed that the Alfvén wings continue to propagate away from Rhea even at this large distance. We have performed three-dimensional hybrid simulations of Rhea's interaction with Saturn's magnetosphere which show that the wake refilling process generates a plasma density gradient directed in the direction of corotating plasma. The resulting plasma pressure gradient exerts a force directed toward Rhea and slows down the plasma streaming into the wake along field lines. As on the same field lines, outside of the wake, the plasma continues to move close to its full speed, this differential motion of plasma bends the magnetic flux tubes, generating Alfvén wings in the wake. The current system excited by the Alfvén wings transfers momentum to the wake plasma extracting it from plasma outside the wake. Our work demonstrates that Alfvén wings can be excited even when a moon does not possess a conducting exosphere.
  •  
4.
  • Lindkvist, Jesper, 1986- (författare)
  • Plasma Interactions with Icy Bodies in the Solar System
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Here I study the “plasma interactions with icy bodies in the solar system”, that is, my quest to understand the fundamental processes that govern such interactions. By using numerical modelling combined with in situ observations, one can infer the internal structure of icy bodies and their plasma environments.After a broad overview of the laws governing space plasmas a more detailed part follows. This contains the method on how to model the interaction between space plasmas and icy bodies. Numerical modelling of space plasmas is applied to the icy bodies Callisto (a satellite of Jupiter), the dwarf planet Ceres (located in the asteroid main belt) and the comet 67P/Churyumov-Gerasimenko.The time-varying magnetic field of Jupiter induces currents inside the electrically conducting moon Callisto. These create magnetic field perturbations thought to be related to conducting subsurface oceans. The flow of plasma in the vicinity of Callisto is greatly affected by these magnetic field perturbations. By using a hybrid plasma solver, the interaction has been modelled when including magnetic induction and agrees well with magnetometer data from flybys (C3 and C9) made by the Galileo spacecraft. The magnetic field configuration allows an inflow of ions onto Callisto’s surface in the central wake. Plasma that hits the surface knocks away matter (sputtering) and creates Callisto’s tenuous atmosphere.A long term study of solar wind protons as seen by the Rosetta spacecraft was conducted as the comet 67P/Churyumov-Gerasimenko approached the Sun. Here, extreme ultraviolet radiation from the Sun ionizes the neutral water of the comet’s coma. Newly produced water ions get picked up by the solar wind flow, and forces the solar wind protons to deflect due to conservation of momentum. This effect of mass-loading increases steadily as the comet draws closer to the Sun. The solar wind is deflected, but does not lose much energy. Hybrid modelling of the solar wind interaction with the coma agrees with the observations; the force acting to deflect the bulk of the solar wind plasma is greater than the force acting to slow it down.Ceres can have high outgassing of water vapour, according to observations by the Herschel Space Observatory in 2012 and 2013. There, two regions were identified as sources of water vapour. As Ceres rotates, so will the source regions. The plasma interaction close to Ceres depends greatly on the source location of water vapour, whereas far from Ceres it does not. On a global scale, Ceres has a comet-like interaction with the solar wind, where the solar wind is perturbed far downstream of Ceres.
  •  
5.
  • Sulaiman, Ali H., et al. (författare)
  • Enceladus and Titan : emerging worlds of the Solar System
  • 2022
  • Ingår i: Experimental astronomy. - : Springer Nature. - 0922-6435 .- 1572-9508. ; 54:2-3, s. 849-876
  • Tidskriftsartikel (refereegranskat)abstract
    • Some of the major discoveries of the recent Cassini-Huygens mission have put Titan and Enceladus firmly on the Solar System map. The mission has revolutionised our view of Solar System satellites, arguably matching their scientific importance with that of their host planet. While Cassini-Huygens has made big surprises in revealing Titan's organically rich environment and Enceladus' cryovolcanism, the mission's success naturally leads us to further probe these findings. We advocate the acknowledgement of Titan and Enceladus science as highly relevant to ESA's long-term roadmap, as logical follow-on to Cassini-Huygens. In this White Paper, we will outline important science questions regarding these satellites and identify the science themes we recommend ESA cover during the Voyage 2050 planning cycle. Addressing these science themes would make major advancements to the present knowledge we have about the Solar System, its formation, evolution, and likelihood that other habitable environments exist outside the Earth's biosphere.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy