SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rova Ulrika) "

Sökning: WFRF:(Rova Ulrika)

  • Resultat 1-10 av 215
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Patel, Alok, Dr. 1989-, et al. (författare)
  • An Overview of Potential Oleaginous Microorganisms and Their Role in Biodiesel and Omega-3 Fatty Acid-Based Industries
  • 2020
  • Ingår i: Microorganisms. - : MDPI. - 2076-2607. ; 8:3
  • Forskningsöversikt (refereegranskat)abstract
    • Microorganisms are known to be natural oil producers in their cellular compartments. Microorganisms that accumulate more than 20% w/w of lipids on a cell dry weight basis are considered as oleaginous microorganisms. These are capable of synthesizing vast majority of fatty acids from short hydrocarbonated chain (C6) to long hydrocarbonated chain (C36), which may be saturated (SFA), monounsaturated (MUFA), or polyunsaturated fatty acids (PUFA), depending on the presence and number of double bonds in hydrocarbonated chains. Depending on the fatty acid profile, the oils obtained from oleaginous microorganisms are utilized as feedstock for either biodiesel production or as nutraceuticals. Mainly microalgae, bacteria, and yeasts are involved in the production of biodiesel, whereas thraustochytrids, fungi, and some of the microalgae are well known to be producers of very long-chain PUFA (omega-3 fatty acids). In this review article, the type of oleaginous microorganisms and their expertise in the field of biodiesel or omega-3 fatty acids, advances in metabolic engineering tools for enhanced lipid accumulation, upstream and downstream processing of lipids, including purification of biodiesel and concentration of omega-3 fatty acids are reviewed.
  •  
2.
  • Ahlén, Gustaf, et al. (författare)
  • Mannosylated mucin-type immunoglobulin fusion proteins enhance antigen-specific antibody and T lymphocyte responses
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Targeting antigens to antigen-presenting cells (APC) improve their immunogenicity and capacity to induce Th1 responses and cytotoxic T lymphocytes (CTL). We have generated a mucin-type immunoglobulin fusion protein (PSGL-1/mIgG2b), which upon expression in the yeast Pichia pastoris became multivalently substituted with O-linked oligomannose structures and bound the macrophage mannose receptor (MMR) and dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) with high affinity in vitro. Here, its effects on the humoral and cellular anti-ovalbumin (OVA) responses in C57BL/6 mice are presented.OVA antibody class and subclass responses were determined by ELISA, the generation of anti-OVA CTLs was assessed in 51Cr release assays using in vitro-stimulated immune spleen cells from the different groups of mice as effector cells and OVA peptide-fed RMA-S cells as targets, and evaluation of the type of Th cell response was done by IFN-γ, IL-2, IL-4 and IL-5 ELISpot assays.Immunizations with the OVA − mannosylated PSGL-1/mIgG2b conjugate, especially when combined with the AbISCO®-100 adjuvant, lead to faster, stronger and broader (with regard to IgG subclass) OVA IgG responses, a stronger OVA-specific CTL response and stronger Th1 and Th2 responses than if OVA was used alone or together with AbISCO®-100. Also non-covalent mixing of mannosylated PSGL-1/mIgG2b, OVA and AbISCO®-100 lead to relatively stronger humoral and cellular responses. The O-glycan oligomannoses were necessary because PSGL-1/mIgG2b with mono- and disialyl core 1 structures did not have this effect.Mannosylated mucin-type fusion proteins can be used as versatile APC-targeting molecules for vaccines and as such enhance both humoral and cellular immune responses.
  •  
3.
  • Andersson, Christian, et al. (författare)
  • Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli
  • 2007
  • Ingår i: Biotechnology progress (Print). - : Wiley. - 8756-7938 .- 1520-6033. ; 23:2, s. 381-388
  • Tidskriftsartikel (refereegranskat)abstract
    • Succinic acid (SA) is an important platform molecule in the synthesis of a number of commodity and specialty chemicals. In the present work, dual-phase batch fermentations with the E. coli strain AFP184 were performed using a medium suited for large-scale industrial production of SA. The ability of the strain to ferment different sugars was investigated. The sugars studied were sucrose, glucose, fructose, xylose, and equal mixtures of glucose and fructose and glucose and xylose at a total initial sugar concentration of 100 g L-1. AFP184 was able to utilize all sugars and sugar combinations except sucrose for biomass generation and succinate production. For sucrose as a substrate no succinic acid was produced and none of the sucrose was metabolized. The succinic acid yield from glucose (0.83 g succinic acid per gram glucose consumed anaerobically) was higher than the yield from fructose (0.66 g g-1). When using xylose as a carbon source, a yield of 0.50 g g-1 was obtained. In the mixed-sugar fermentations no catabolite repression was detected. Mixtures of glucose and xylose resulted in higher yields (0.60 g g-1) than use of xylose alone. Fermenting glucose mixed with fructose gave a lower yield (0.58 g g-1) than fructose used as the sole carbon source. The reason is an increased pyruvate production. The pyruvate concentration decreased later in the fermentation. Final succinic acid concentrations were in the range of 25-40 g L-1. Acetic and pyruvic acid were the only other products detected and accumulated to concentrations of 2.7-6.7 and 0-2.7 g L-1. Production of succinic acid decreased when organic acid concentrations reached approximately 30 g L-1. This study demonstrates that E. coli strain AFP184 is able to produce succinic acid in a low cost medium from a variety of sugars with only small amounts of byproducts formed.
  •  
4.
  • Andersson, Christian, et al. (författare)
  • Effects of neutralising agent, organic acids, and osmolarity on succinic acid production by Escherichia coli AFP184
  • 2008
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Using a low-cost medium Escherichia coli AFP184 has previously been reported to produce succinic acid with volumetric productivities close to 3 g L-1 h-1. At a total organic acid concentration of 30 g L-1 the productivity decreased drastically resulting in final succinate concentrations of 40 g L-1. The economical viability of biochemical succinic acid production would benefit from higher final succinic acid concentrations and volumetric productivities maintained at >2.5 g L-1 h-1 for an extended period of time. In the present work the effects of osmolarity and neutralising agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3) on succinic acid production by AFP184 were investigated. Highest concentration of succinic acid was obtained with Na2CO3, 75 g L-1. It was also found that the osmolarity resulting from succinate production and subsequent base addition, only marginally affected the productivity per viable cell. Organic acid inhibition due to the produced succinic acid on the other hand significantly reduced succinic acid productivity per viable cell. When using NH4OH productivity completely ceased at approximately 40 g L-1. Volumetric productivities remained at 2.5 g L-1 h-1 for 5 to 10 hours longer when using K- or Na-bases than when using NH4OH. However, loss of cell viability occurred, and together with the acid inhibition decreased the volumetric productivities. In this study it was demonstrated that by altering the neutralising agent it was possible to increase the period of high volumetric productivity in the anaerobic phase and improve the final succinic acid concentration by almost 100 %
  •  
5.
  • Andersson, Christian, et al. (författare)
  • Inhibition of succinic acid production in metabolically engineered Escherichia Coli by neutralizing agent, organic acids, and osmolarity
  • 2009
  • Ingår i: Biotechnology progress (Print). - : Wiley. - 8756-7938 .- 1520-6033. ; 25:1, s. 116-123
  • Tidskriftsartikel (refereegranskat)abstract
    • The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L-1 h(-1) is important if production of succinic acid from. renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L-1. was obtained with Na2O3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of similar to 40 g L-1. Volumetric productivities remained at 2.5 g L-1 h(-1) for tip to 10 h longer when K- or Na-bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity.
  •  
6.
  • Andersson, Christian, et al. (författare)
  • Maintaining high anaerobic succinic acid productivity by product removal
  • 2010
  • Ingår i: Bioprocess and biosystems engineering (Print). - : Springer Science and Business Media LLC. - 1615-7591 .- 1615-7605. ; 33:6, s. 711-718
  • Tidskriftsartikel (refereegranskat)abstract
    • During dual-phase fermentations using Escherichia coli engineered for succinic acid production, the productivity and viable cell concentration decrease as the concentration of succinic acid increases. The effects of succinic acid on the fermentation kinetics, yield, and cell viability were investigated by resuspending cells in fresh media after selected fermentation times. The cellular succinic acid productivity could be restored, but cell viability continuously decreased throughout the fermentations by up to 80% and subsequently the volumetric productivity was reduced. Omitting complex nutrients in the resuspension media had no significant effect on cellular succinate productivity and yield, although the viable cell concentration and thus the volumetric productivity was reduced by approximately 20%. By resuspending the cells, the amount of succinate produced during a 100-h fermentation was increased by more than 60%. The results demonstrate that by product removal succinic acid productivity can be maintained at high levels for extended periods of time.
  •  
7.
  • Andersson, Christian, et al. (författare)
  • Process for producing succinic acid from sucrose
  • 2005
  • Patent (populärvet., debatt m.m.)abstract
    • A process for hydrolyzing sucrose to glucose and fructose using succinic acid is described. The hydrolysate can be used to produce purified glucose and/or fructose or can be used as a carbon source for fermentations to produce various chemicals including succinic acid.
  •  
8.
  • Antonopoulou, Io, 1989-, et al. (författare)
  • CO2 to Methanol: A Highly Efficient Enzyme Cascade
  • 2022. - 1
  • Ingår i: Multienzymatic Assemblies. - New York, NY : Springer Nature. ; , s. 317-344
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon dioxide (CO2) has been increasingly regarded not only as a greenhouse gas but also as a valuable feedstock for carbon-based chemicals. In particular, biological approaches have drawn attention as models for the production of value-added products, as CO2 conversion serves many natural processes. Enzymatic CO2 reduction in vitro is a very promising route to produce fossil free and bio-based fuel alternatives, such as methanol. In this chapter, the advances in constructing competitive multi-enzymatic systems for the reduction of CO2 to methanol are discussed. Different integrated methods are presented, aiming to address technological challenges, such as the cost effectiveness, need for material regeneration and reuse and improving product yields of the process.
  •  
9.
  • Antonopoulou, Io, 1989- (författare)
  • Development of biocatalytic processes for selective antioxidant production
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Feruloyl esterases (FAEs, EC 3.1.1.73) represent a subclass of carboxylic acid esterases that under normal conditions catalyze the hydrolysis of the ester bond between hydroxycinnamic acids (ferulic acid, sinapic acid, caffeic acid, p-coumaric acid) and sugar residues in plant cell walls. Based on their specificity towards monoferulates and diferulates, substitutions on the phenolic ring and on their amino acid sequence identity, they have been classified into four types (A-D) while phylogenetic analysis has resulted in classification into thirteen subfamilies (SF1-13). Under low water content, these enzymes are able to catalyze the esterification of hydroxycinnamic acids or the transesterification of their esters (donor) with alcohols or sugars (acceptor) resulting in compounds with modified lipophilicity, having a great potential for use in the tailor-made modification of natural antioxidants for cosmetic, cosmeceutical and pharmaceutical industries. The work described in this thesis focused on the selection,characterization and application of FAEs for the synthesis of bioactive esters with antioxidant activity in non-conventional media. The basis of the current classification systems was investigated in relation with the enzymes’ synthetic and hydrolytic abilities while the developed processes were evaluated for their efficiency and sustainability.Paper I was dedicated to the screening and evaluation of the synthetic abilities of 28 fungal FAEs using acceptors of different lipophilicity at fixed conditions in detergentless microemulsions. It was revealed that FAEs classified in phylogenetic subfamilies related to acetyl xylan esterases (SF5 and 6) showed increased transesterification rates and selectivity. In general, FAEs showed preference on more hydrophilic alcohol acceptors and in descending order to glycerol > 1-butanol > prenol. Homology modeling and small molecule docking simulations were employed as tools for the identification of a potential relationship between the predicted surface and active site properties of selected FAEs and the transesterification selectivity.Papers II- IV focused on the characterization of eight promising FAEs and the optimization of reaction conditions for the synthesis of two bioactive esters (prenyl ferulate and L-arabinose ferulate) in detergentless microemulsions. The effect of the medium composition, the donor and acceptor concentration, the enzyme load, the pH, the temperature and the agitation on the transesterification yield and selectivity were investigated. It was observed that the acceptor concentration and enzyme load were crucial parameters for selectivity. Fae125 (Type A, SF5) iiexhibited highest prenyl ferulate yield (81.1%) and selectivity (4.685) converting 98.5% of VFA to products after optimization at 60 mM VFA, 1.5 M prenol, 0.04 mg FAE mL-1, 40oC, 24 h, 53.4:43.4:3.2 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0. On the other hand, FaeA1 (Type A, SF5) showed highest L-arabinose ferulate yield (52.2 %) and selectivity (1.120) at 80 mM VFA, 55 mM L-arabinose, 0.02 mg FAE mL-1, 50oC, 8 h, 19.8: 74.7: 5.5 v/v/v n-hexane: t-butanol: 100 mM MOPS-NaOH pH 8.0.In paper V, the effect of reaction media on the enzyme stability and transesterification yield and selectivity was studied in different solvents for the synthesis of two bioactive esters: prenyl ferulate and L-arabinose ferulate. The best performing enzyme (Fae125) was used in the optimization of reaction conditions in the best solvent (n-hexane) via response surface methodology. Both bioconversions were best described by a two-factor interaction model while optimal conditions were determined as the ones resulting in highest yield and selectivity.Highest prenyl ferulate yield (87.5%) and selectivity (7.616) were observed at 18.56 mM prenol mM-1VFA, 0.04 mg FAE mL-1, 24.5 oC, 24.5 h, 91.8: 8.2 v/v n-hexane: 100 mM sodium acetate pH 4.7. Highest L-arabinose ferulate yield (56.2%) and selectivity (1.284) were observed at 2.96 mM L-arabinose mM-1VFA, 0.02 mg FAE mL-1, 38.9 oC, 12 h, 90.5: 5.0: 4.5 v/v/v n-hexane: dimethyl sulfoxide: 100 mM sodium acetate pH 4.7. The enzyme could be reused for six consecutive reaction cycles maintaining 66.6% of its initial synthetic activity. The developed bioconversions showed exceptional biocatalyst productivities (> 300 g product g-1FAE) and the waste production was within the range of pharmaceutical processes.Paper VI focused on the investigation of the basis of the type A classification of a well-studied FAE from Aspergillus niger(AnFaeA) by comparing its activity towards methyl and arabinose hydroxycinnamic acid esters. For this purpose, L-arabinose ferulateand caffeate were synthesized enzymatically. kcat/Kmratios revealed that AnFaeA hydrolyzed arabinose ferulate 1600 times and arabinose caffeate 6.5 times more efficiently than methyl esters. This study demonstrated that short alkyl chain hydroxycinnamate esters which are used nowadays for FAE classification can lead to activity misclassification, while L-arabinose esters could potentially substitute synthetic esters in classification describing more adequately the enzyme specificitiesin the natural environment.
  •  
10.
  • Antonopoulou, Io, et al. (författare)
  • Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application
  • 2016
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 0175-7598 .- 1432-0614. ; 100:15, s. 6519-6543
  • Tidskriftsartikel (refereegranskat)abstract
    • Cosmeceuticals are cosmetic products containing biologically active ingredients purporting to offer a pharmaceutical therapeutic benefit. The active ingredients can be extracted and purified from natural sources (botanicals, herbal extracts, or animals) but can also be obtained biotechnologically by fermentation and cell cultures or by enzymatic synthesis and modification of natural compounds. A cosmeceutical ingredient should possess an attractive property such as anti-oxidant, anti-inflammatory, skin whitening, anti-aging, anti-wrinkling, or photoprotective activity, among others. During the past years, there has been an increased interest on the enzymatic synthesis of bioactive esters and glycosides based on (trans)esterification, (trans)glycosylation, or oxidation reactions. Natural bioactive compounds with exceptional theurapeutic properties and low toxicity may offer a new insight into the design and development of potent and beneficial cosmetics. This review gives an overview of the enzymatic modifications which are performed currently for the synthesis of products with attractive properties for the cosmeceutical industry
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 215
Typ av publikation
tidskriftsartikel (161)
forskningsöversikt (14)
konferensbidrag (10)
annan publikation (9)
doktorsavhandling (8)
bokkapitel (8)
visa fler...
licentiatavhandling (2)
patent (2)
rapport (1)
visa färre...
Typ av innehåll
refereegranskat (177)
övrigt vetenskapligt/konstnärligt (34)
populärvet., debatt m.m. (4)
Författare/redaktör
Rova, Ulrika (213)
Christakopoulos, Pau ... (166)
Matsakas, Leonidas (125)
Patel, Alok, Dr. 198 ... (34)
Berglund, Kris (19)
Antonopoulou, Io, 19 ... (19)
visa fler...
Hodge, David (14)
Hrůzová, Kateřina (14)
Sjöblom, Magnus (13)
Sarkar, Omprakash (12)
Karnaouri, Anthi C. (12)
Krige, Adolf (11)
Topakas, Evangelos (10)
Andersson, Christian (8)
Helmerius, Jonas (8)
Jûtten, Peter (8)
Krikigianni, Eleni (8)
Antonopoulou, Io (7)
Jansson, Stina (6)
Shi, Yijun (6)
Olsson, Lisbeth, 196 ... (6)
Iancu, Laura (6)
Cerullo, Gabriella (6)
Piechot, Alexander (6)
Faraco, Vincenza (6)
Karnaouri, Anthi (6)
Varriale, Simona (5)
Bajracharya, Suman (5)
Mesfun, Sennai (5)
Raghavendran, Vijaye ... (5)
Bettiga, Maurizio, 1 ... (4)
Holgersson, Jan (4)
Ramser, Kerstin (4)
Lundgren, Joakim (4)
Sapountzaki, Elefthe ... (4)
Crestini, Claudia (4)
Katapodis, Petros (4)
Sand, Anders (4)
Mu, Liwen (4)
Monção, Maxwel (4)
Mathew, Aji P. (3)
Gräslund, Astrid (3)
Thelander, Lars (3)
Tysklind, Mats (3)
Strindelius, Lena (3)
Sandgren, Mats (3)
Nilsson, Robert (3)
Bazar, July Ann (3)
Zerva, Anastasia (3)
de Oliveira Maciel, ... (3)
visa färre...
Lärosäte
Luleå tekniska universitet (210)
Chalmers tekniska högskola (11)
Umeå universitet (9)
RISE (5)
Sveriges Lantbruksuniversitet (5)
Göteborgs universitet (3)
visa fler...
Kungliga Tekniska Högskolan (3)
Stockholms universitet (3)
Högskolan i Borås (2)
Karolinska Institutet (2)
Linköpings universitet (1)
Lunds universitet (1)
visa färre...
Språk
Engelska (215)
Forskningsämne (UKÄ/SCB)
Teknik (197)
Naturvetenskap (39)
Medicin och hälsovetenskap (8)
Lantbruksvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy