SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rowland Lucy M.) "

Sökning: WFRF:(Rowland Lucy M.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tavares, Julia, et al. (författare)
  • Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7959, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical forests face increasing climate risk(1,2), yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, ?(50)) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk(3-5), little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters ?(50) and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both ?(50) and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM(50 )forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon(6,7), with strong implications for the Amazon carbon sink.
  •  
2.
  • Lin, Yan-Shih, et al. (författare)
  • Optimal stomatal behaviour around the world
  • 2015
  • Ingår i: Nature Climate Change. - : Springer Science and Business Media LLC. - 1758-678X .- 1758-6798. ; 5, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2,3.We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
3.
  • Lin, Yan-Shih, et al. (författare)
  • Optimal stomatal behaviour around the world
  • 2015
  • Ingår i: Nature Climate Change. - 1758-6798 .- 1758-678X. ; 5:5, s. 459-464
  • Tidskriftsartikel (refereegranskat)abstract
    • Stomatal conductance (g(s)) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of g(s) in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of g(s) that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed g(s) obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model(1) and the leaf and wood economics spectrum(2,3). We also demonstrate a global relationship with climate. These findin g(s) provide a robust theoretical framework for understanding and predicting the behaviour of g(s) across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
  •  
4.
  • Bartholomew, David, et al. (författare)
  • Differential nutrient limitation and tree height control leaf physiology, supporting niche partitioning in tropical dipterocarp forests
  • 2022
  • Ingår i: Functional Ecology. - : John Wiley & Sons. - 0269-8463 .- 1365-2435. ; 36:8, s. 2084-2103
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Revealing the mechanisms of environmental niche partitioning within lowland tropical forests is important for understanding the drivers of current species distributions and potential vulnerability to environmental change. Tropical forest structure and species composition change across edaphic gradients in Borneo over short distances. However, our understanding of how edaphic conditions affect tree physiology and whether these relationships drive niche partitioning within Bornean forests remains incomplete.2. This study evaluated how leaf physiological function changes with nutrient availability across a fine-scale edaphic gradient and whether these relationships vary according to tree height. Furthermore, we tested whether intraspecific leaf trait variation allows generalist species to populate a wider range of environments.3. We measured leaf traits of 218 trees ranging in height from 4 to 66 m from 13 dipterocarp species within four tropical forest types (alluvial, mudstone, sandstone and kerangas) occurring along an <5 km edaphic gradient in North Borneo. The traits measured included saturating photosynthesis (Asat), maximum photosynthetic capacity (Vcmax), leaf dark respiration (Rleaf), leaf mass per area (LMA), leaf thickness, minimum stomatal conductance (gdark) and leaf nutrient concentrations (N, P, Ca, K and Mg).4. Across all species, leaf traits varied consistently in response to soil nutrient availability across forest types except Rleaf_mass, [Mg]leaf and [Ca]leaf. Changes in photosynthesis and respiration rates were related to different leaf nutrients across forest types, with greater nutrient-use efficiency in more nutrient-poor environments. Generalist species partially or fully compensated reductions in mass-based photosynthesis through increasing LMA in more nutrient-poor environments.5. Leaf traits also varied with tree height, except Vcmax_mass, but only in response to height-related modifications of leaf morphology (LMA and leaf thickness). These height–trait relationships did not vary across the edaphic gradient, except for Asat, [N]leaf, [P]leaf and [K]leaf.6. Our results highlight that modification of leaf physiological function and morphology act as important adaptations for Bornean dipterocarps in response to edaphic and vertical environmental gradients. Meanwhile, multiple nutrients appear to contribute to niche partitioning and could drive species distributions and high biodiversity within Bornean forest landscapes. Read the free Plain Language Summary for this article on the Journal blog.
  •  
5.
  • Rifai, Sami W., et al. (författare)
  • ENSO Drives interannual variation of forest woody growth across the tropics
  • 2018
  • Ingår i: Philosophical Transactions of the Royal Society B: Biological Sciences. - : The Royal Society. - 1471-2970 .- 0962-8436. ; 373:1760
  • Tidskriftsartikel (refereegranskat)abstract
    • Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.
  •  
6.
  • Turner, Andrew D., et al. (författare)
  • Assessing the presence of marine toxins in bivalve molluscs from southwest India
  • 2017
  • Ingår i: Toxicon. - : Elsevier BV. - 0041-0101 .- 1879-3150. ; 140, s. 147-156
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2017 Elsevier Ltd The south west coast of India has been showing a steady increase in shellfish cultivation both for local consumption and fishery export, over recent years. Perna viridis and Crassostrea madrasensis are two species of bivalve molluscs which grow in some selected regions of southern Karnataka, close to the city of Mangalore. In the early 1980s, shellfish consumers in the region were affected by intoxication from Paralytic Shellfish Poison present in local bivalves (clams and oysters) resulting in hospitalisation of many, including one fatality. Since then, there have been no further reports of serious shellfish intoxication and there is little awareness of the risks from natural toxins and no routine monitoring programme in place to protect shellfish consumers. This study presents the findings from the first ever systematic assessment of the presence of marine toxins in mussels and oysters grown in four different shellfish harvesting areas in the region. Shellfish were collected and subjected to analysis for ASP, PSP and lipophilic toxins, as well as a suite of non-EU regulated toxins such as tetrodotoxin and selected cyclic imines. Results revealed the presence of low levels of PSP toxins in oysters throughout the study period. Overall, total toxicities reached a maximum of 10% of the EU regulatory limit of 800 μg STX eq/kg. Toxin profiles were similar to those reported from the 1980 outbreak. No evidence was found for significant levels of ASP and lipophilic toxins, although some cyclic imines were detected, including gymnodimine. The results indicated that the risk to shellfish consumers during this specific study period would have been low. However, with historical evidence for extremely high levels of PSP toxins in molluscs, there is a strong need for routine surveillance of shellfish production areas for marine toxins, in order to mitigate against human health impacts resulting from unexpected harmful algal blooms, with potentially devastating socio-economic consequences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Rowland, Lucy (4)
Linderson, Maj-Lena (2)
Malhi, Yadvinder (2)
Phillips, Oliver L. (2)
Rogers, Alistair (2)
Sun, Wei (2)
visa fler...
Zaragoza-Castells, J ... (2)
Bonal, Damien (2)
Onoda, Yusuke (2)
Wang, Han (2)
De Angelis, Paolo (2)
Ellsworth, David S. (2)
Gimeno, Teresa E. (2)
Kolari, Pasi (2)
Freeman, Michael (2)
Medlyn, Belinda E. (2)
Uddling, Johan, 1972 (1)
Wallin, Göran, 1955 (1)
Adu-Bredu, Stephen (1)
Baker, Timothy R. (1)
Moore, Sam (1)
Oliveras, Imma (1)
Uddling, Johan (1)
Metcalfe, Daniel B. (1)
Godhe, Anna, 1967 (1)
Muscarella, Robert (1)
Wallin, Goran (1)
Barlow, Jos (1)
Berenguer, Erika (1)
Karunasagar, Indrani (1)
Bartholomew, David (1)
Burslem, David F. R. ... (1)
Bittencourt, Paulo R ... (1)
Nilus, Reuben (1)
Banin, Lindsay F. (1)
Suis, Mohd Aminur Fa ... (1)
Mercado, Lina M. (1)
Hirota, Marina (1)
Tarvainen, Lasse (1)
Turner, Lucy M. (1)
Girardin, Cecile A. ... (1)
Araujo-Murakami, Ale ... (1)
Brienen, Roel (1)
Gilpin, Martin (1)
Addo-Danso, Shalom D ... (1)
Oliveira, Rafael S. (1)
Tarvainen, Lasse, 19 ... (1)
Prentice, I. Colin (1)
Doughty, Christopher ... (1)
Silva Espejo, Javier ... (1)
visa färre...
Lärosäte
Göteborgs universitet (2)
Lunds universitet (2)
Umeå universitet (1)
Uppsala universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (5)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy