SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roytrakul Sittiruk) "

Sökning: WFRF:(Roytrakul Sittiruk)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Angthong, Pacharaporn, et al. (författare)
  • Characterization and function of a tachylectin 5-like immune molecule in Penaeus monodon
  • 2017
  • Ingår i: Developmental and Comparative Immunology. - : ELSEVIER SCI LTD. - 0145-305X .- 1879-0089. ; 76, s. 120-131
  • Tidskriftsartikel (refereegranskat)abstract
    • Tachylectin5A and its homolog, tachylectin5B both contain a fibrinogen-related domain (FReD) and have been studied in horseshoe crabs, Tachypleus tridentatus and Carcinoscorpius rotundicauda and shown to be involved in host defense. Here, we demonstrate the presence of tachylectin5-like genes in shrimp, Penaeus monodon, designated as Penlectin5-1 (PL5-1) and Penlectin5-2 (PL5-2), which both contain a signal peptide and a single FReD with an acetyl group and a calcium binding sites and they are both structurally similar to horseshoe crab tachylectin/carcinolectin5. The PL5-land PL5-2 transcript were expressed in various shrimp tissues in normal shrimp, and their expression was upregulated in tissues such as hemocytes and hindgut following challenge with pathogenic Vibrio harveyi. The PL5-2 protein was detected in various tissues as well as in cell-free hemolymph. The biological function of the PL5-2 protein is to recognize some Gram-positive and Gram-negative bacteria regardless whether they are non-pathogenic or pathogenic. They have hemagglutination activity on human erythrocyte and bacterial agglutination activity to both Gram negative and Gram positive bacteria. Possible binding sites of PL5-2 to bacteria could be at the N-acetyl moiety of the G1cNAc-MurNAc cell wall of the peptidoglycan since the binding could be inhibited by G1cNAc or GaINAC. The presence of PL5-2 protein in both circulating hemolymph and intestine, where host and microbes are usually interacting, may suggest that the physiological function of shrimp tachylectin-like proteins is to recognize and bind to invading bacteria to immobilize and entrap these microbes and subsequently clear them from circulation and the host body, and probably to control and maintain the normal flora in the intestine.
  •  
2.
  • Angthong, Pacharaporn, et al. (författare)
  • Involvement of a tachylectin-like gene and its protein in pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in the shrimp, Penaeus monodon
  • 2017
  • Ingår i: Developmental and Comparative Immunology. - : ELSEVIER SCI LTD. - 0145-305X .- 1879-0089. ; 76, s. 229-237
  • Tidskriftsartikel (refereegranskat)abstract
    • A shrimp disease, the so-called acute hepatopancreatic necrosis disease (AHPND) is caused by a specific strain of Vibrio parahaemolyticus (VP) and it has resulted in significant losses to the global shrimp farming industry. In our previous study, three of tachylectin-like genes were cloned and characterized from the intestine of Penaeus monodon, designated as Penlectin5-1 (PL5-1), Penlectin5-2 (PL5-2) and Penlectin5-3 (PL5-3). These three genes all contain fibrinogen-related domain (FReD). The expression level of PL5-1, PL5-2 and PL5-3 was elevated in the stomach after oral administration with AHPND-causing V. parahaemolyticus 3HP (VP3HP). A polyclonal antibody to PL5-2 was successfully produced in a rabbit using the purified recombinant P15-2 as an immunogen, and this because only the predominant protein PL5-2 could be successfully purified from shrimp plasma by affinity chromatography using a N-Acetyl-oglucosamine column allowed us to perform functional studies of this lectin. The native purified PL5-2 protein had binding and agglutination activities towards VP3HR To further understand the functions and the involvements of this lectin in response to AHPND in shrimp, RNAi-mediated knockdown of PL5-1, PL5-2 or PL5-3 was performed prior to an oral administration of VP3HP. As a result, Penlectin5-silencing in shrimp challenged with VP3HP showed higher mortality and resulted in more severe histopathological changes in the hepatopancreas with typical signs of AHPND. These results therefore suggest a role for crustacean fibrinogen-related proteins (FRePs) in innate immune response during the development of AHPND, and maybe also during other infections.
  •  
3.
  • Udompetcharaporn, Attasit, et al. (författare)
  • Identification and characterization of a QM protein as a possible peptidoglycan recognition protein (PGRP) from the giant tiger shrimp Penaeus monodon
  • 2014
  • Ingår i: Developmental and Comparative Immunology. - : Elsevier BV. - 0145-305X .- 1879-0089. ; 46:2, s. 146-154
  • Tidskriftsartikel (refereegranskat)abstract
    • In an attempt to identify a peptidoglycan recognition protein (PGRP) in Penaeus (Penaeus) monodon, in vitro pull-down binding assays were used between shrimp proteins and purified peptidoglycan (PG). By gel electrophoresis and mass spectrometry followed by Mascot program analysis, proteins from shrimp hemocyte peripheral membrane proteins showed significant homology to records for a QM protein, actin and prophenoloxidase 2 precursor (proPO2), while proteins from cell-free plasma showed significant homology to records for a vitellogenin, a fibrinogen related protein (FREP) and a C-type lectin. Due to time and resource limitations, specific binding to PG was examined only for recombinant PmQM protein and PmLec that were synthesized based on sequences reported in the Genbank database (accession numbers FJ766846 and DQ078266, respectively). An in vitro assay revealed that hemocytes would bind with and encapsulate agarose beads coated with recombinant PmQM (rPmQM) or rPmLec and that melanization followed 2 h post-encapsulation. ELISA tests confirmed specific binding of rPmQM protein to PG. This is the first time that PmQM has been reported as a potential PGRP in shrimp or any other crustacean. The two other potential PGRP identified (FREP and the vitellin-like protein present in male P. monodon, unlike other vitellin subunits) should also be expressed heterologously and tested for their ability to activate shrimp hemocytes.
  •  
4.
  • Watthanasurorot, Apiruck, et al. (författare)
  • Astakine 2-the Dark Knight Linking Melatonin to Circadian Regulation in Crustaceans
  • 2013
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 9:3, s. e1003361-
  • Tidskriftsartikel (refereegranskat)abstract
    • Daily, circadian rhythms influence essentially all living organisms and affect many physiological processes from sleep and nutrition to immunity. This ability to respond to environmental daily rhythms has been conserved along evolution, and it is found among species from bacteria to mammals. The hematopoietic process of the crayfish Pacifastacus leniusculus is under circadian control and is tightly regulated by astakines, a new family of cytokines sharing a prokineticin (PROK) domain. The expression of AST1 and AST2 are light-dependent, and this suggests an evolutionarily conserved function for PROK domain proteins in mediating circadian rhythms. Vertebrate PROKs are transmitters of circadian rhythms of the suprachiasmatic nucleus (SCN) in the brain of mammals, but the mechanism by which they function is unknown. Here we demonstrate that high AST2 expression is induced by melatonin in the brain. We identify RACK1 as a binding protein of AST2 and further provide evidence that a complex between AST2 and RACK1 functions as a negative-feedback regulator of the circadian clock. By DNA mobility shift assay, we showed that the AST2-RACK1 complex will interfere with the binding between BMAL1 and CLK and inhibit the E-box binding activity of the complex BMAL1-CLK. Finally, we demonstrate by gene knockdown that AST2 is necessary for melatonin-induced inhibition of the complex formation between BMAL1 and CLK during the dark period. In summary, we provide evidence that melatonin regulates AST2 expression and thereby affects the core clock of the crustacean brain. This process may be very important in all animals that have AST2 molecules, i.e. spiders, ticks, crustaceans, scorpions, several insect groups such as Hymenoptera, Hemiptera, and Blattodea, but not Diptera and Coleoptera. Our findings further reveal an ancient evolutionary role for the prokineticin superfamily protein that links melatonin to direct regulation of the core clock gene feedback loops.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy