SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rozell Björn) "

Sökning: WFRF:(Rozell Björn)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hässler, Signe, et al. (författare)
  • Aire deficient mice develop hematopoetic irregularities and marginal zone B cell lymphoma
  • 2006
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 108:6, s. 1941-1948
  • Tidskriftsartikel (refereegranskat)abstract
    • Autoimmune polyendocrine syndrome type I (APS I) is an inherited recessive disorder with a progressive immunological destruction of many tissues including the adrenal cortex, the parathyroid glands, and the gonads. APS I is caused by mutations in the AIRE gene (autoimmune regulator), expressed in cells of the thymus and spleen, suggesting a role in central and peripheral tolerance. Aire(-/-) mice replicate the autoimmune features of APS I patients with the presence of multiple autoantibodies and lymphocytic infiltrates in various tissues, but young mice appear clinically healthy. We here report the investigation of 15- to 24-month-old Aire(-/-) mice. We did not observe any endocrinological abnormalities, nor did sera from these mice recognize known APS I autoantigens. Interestingly, however, there was a high frequency of marginal zone B-cell lymphoma in Aire(-/-) mice and liver infiltrates of B cells, suggesting chronic antigen exposure and exaggerated activation. Furthermore, increased numbers of monocytes in blood were identified as well as augmented numbers of metallophilic macrophages in the spleen. We propose that Aire, in addition to its function in the thymus, also has a peripheral regulatory role by controlling the development of antigen-presenting cells (APCs) and marginal zone B-cell activation.
  •  
2.
  • Tinnikov, Alexander, et al. (författare)
  • Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1.
  • 2002
  • Ingår i: The EMBO journal. - : Wiley. - 0261-4189 .- 1460-2075. ; 21:19, s. 5079-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Most patients with the syndrome resistance to thyroid hormone (RTH) express a mutant thyroid hormone receptor beta (TRbeta) with transdominant negative transcriptional effects. Since no patient with a mutant TRalpha has been identified, we introduced a point mutation into the mouse thyroid hormone receptor (TRalpha1) locus originally found in the TRbeta gene, that reduces ligand binding 10-fold. Heterozygous 2- to 3-week- old mice exhibit a severe retardation of post-natal development and growth, but only a minor reduction in serum thyroxine levels. Homozygous mice died before 3 weeks of age. Adult heterozygotes overcome most of these defects except for cardiac function abnormalities, suggesting that other factors compensate for the receptor defect. However, the additional deletion of the TRbeta gene in this mouse strain caused a 10-fold increase in serum thyroxine, restored hormonal regulation of target genes for TRs, and rescued the growth retardation. The data demonstrate a novel array of effects mediated by a dominant negative TRalpha1, and may provide important clues for identification of a potentially unrecognized human disorder and its treatment.
  •  
3.
  • Assarsson, Erika, et al. (författare)
  • Severe defect in thymic development in an insertional mutant mouse model.
  • 2007
  • Ingår i: Journal of immunology (Baltimore, Md. : 1950). - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 178:8, s. 5018-5027
  • Tidskriftsartikel (refereegranskat)abstract
    • Transgenic mice were generated expressing NK1.1, an NK cell-associated receptor, under control of the human CD2 promoter. Unexpectedly, one of the founder lines, Tg66, showed a marked defect in thymic development characterized by disorganized architecture and small size. Mapping of the transgene insertion by fluorescence in situ hybridization revealed integration in chromosome 2, band G. Already from postnatal day 3, the thymic architecture was disturbed with a preferential loss of cortical thymic epithelial cells, a feature that became more pronounced over time. Compared with wild-type mice, total thymic cell numbers decreased dramatically between 10 and 20 days of age. Thymocytes isolated from adult Tg66 mice were predominantly immature double-negative cells, indicating a block in thymic development at an early stage of differentiation. Consequently, Tg66 mice had reduced numbers of peripheral CD4(+) and CD8(+) T cells. Bone marrow from Tg66 mice readily reconstituted thymi of irradiated wild-type as well as RAG-deficient mice. This indicates that the primary defect in Tg66 mice resided in nonhemopoietic stromal cells of the thymus. The phenotype is observed in mice heterozygous for the insertion and does not resemble any known mutations affecting thymic development. Preliminary studies in mice homozygous for transgene insertion reveal a more accelerated and pronounced phenotype suggesting a semidominant effect. The Tg66 mice may serve as a useful model to identify genes regulating thymic epithelial cell differentiation, thymic development, and function.
  •  
4.
  • Espinosa, Alexander, et al. (författare)
  • Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23-Th17 pathway
  • 2009
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 206:8, s. 1661-1671
  • Tidskriftsartikel (refereegranskat)abstract
    • Ro52/Trim21 is targeted as an autoantigen in systemic lupus erythematosus and Sjögren's syndrome. Polymorphisms in the Ro52 gene have been linked to these autoimmune conditions, but the molecular mechanism by which Ro52 may promote development of systemic autoimmune diseases has not been explored. To address this issue, we generated Ro52-null mice (Ro52(-/-)), which appear phenotypically normal if left unmanipulated. However, Ro52(-/-) mice develop severe dermatitis extending from the site of tissue injury induced by ear tags. The affected mice further develop several signs of systemic lupus with hypergammaglobulinemia, autoantibodies to DNA, proteinuria, and kidney pathology. Ro52, which was recently identified as an E3 ligase, mediates ubiquitination of several members of the interferon regulatory factor (IRF) family, and the Ro52-deficient mice have an enhanced production of proinflammatory cytokines that are regulated by the IRF transcription factors, including cytokines involved in the Th17 pathway (interleukin [IL] 6, IL-12/IL-23p40, and IL-17). Loss of IL-23/IL-17 by genetic deletion of IL-23/p19 in the Ro52(-/-) mice conferred protection from skin disease and systemic autoimmunity. These data reveal that the lupus-associated Ro52 protein is an important negative regulator of proinflammatory cytokine production, and they provide a mechanism by which a defective Ro52 function can lead to tissue inflammation and systemic autoimmunity through the IL-23-Th17 pathway.
  •  
5.
  • Gupta, Shashank, et al. (författare)
  • Global and 3D Spatial Assessment of Neuroinflammation in Rodent Models of Multiple Sclerosis.
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Multiple Sclerosis (MS) is a progressive autoimmune inflammatory and demyelinating disease of the central nervous system (CNS). T cells play a key role in the progression of neuroinflammation in MS and also in the experimental autoimmune encephalomyelitis (EAE) animal models for the disease. A technology for quantitative and 3 dimensional (3D) spatial assessment of inflammation in this and other CNS inflammatory conditions is much needed. Here we present a procedure for 3D spatial assessment and global quantification of the development of neuroinflammation based on Optical Projection Tomography (OPT). Applying this approach to the analysis of rodent models of MS, we provide global quantitative data of the major inflammatory component as a function of the clinical course. Our data demonstrates a strong correlation between the development and progression of neuroinflammation and clinical disease in several mouse and a rat model of MS refining the information regarding the spatial dynamics of the inflammatory component in EAE. This method provides a powerful tool to investigate the effect of environmental and genetic forces and for assessing the therapeutic effects of drug therapy in animal models of MS and other neuroinflammatory/neurodegenerative disorders.
  •  
6.
  •  
7.
  • Sadeghi, Behnam, et al. (författare)
  • Expansion and Activation Kinetics of Immune Cells during Early Phase of GVHD in Mouse Model Based on Chemotherapy Conditioning
  • 2010
  • Ingår i: Clinical & Developmental Immunology. - : Hindawi Limited. - 1740-2522 .- 1740-2530. ; 2010, s. 142943-
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present paper, we have investigated early pathophysiological events in graft-versus-host disease (GVHD), a major complication to hematopoietic stem cell transplantation (HSCT). BLLB/c female mice conditioned with busulfan/cyclophosphamide (Bu-Cy) were transplanted with allogeneic male C57BL/6. Control group consisted of syngeneic transplanted Balb/c mice. In allogeneic settings, significant expansion and maturation of donor dendritic cells (DCs) were observed at day +3, while donor T-cells CD8+ were increased at day +5 (230%) compared to syngeneic HSCT. Highest levels of inflammatory cytokines IL-2, IFN-gamma, and TNF-alfa at day +5 matched T-cell activation. Concomitantly naïve T-cells gain effecr-memory phenotype and migrated from spleen to peripheral lymphoid organs. Thus, in the very early phase of GHVD following Bu-Cy conditioning donor, DCs play an important role in the activation of donor T cells. Subsequently, donor naïve T-cells gain effector-memory phenotype and initiate GVHD.
  •  
8.
  • Strandgren, Charlotte, et al. (författare)
  • Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects.
  • 2015
  • Ingår i: FASEB journal : official publication of the Federation of American Societies for Experimental Biology. - : Wiley. - 1530-6860. ; 29:8, s. 3193-3205
  • Tidskriftsartikel (refereegranskat)abstract
    • Hutchinson-Gilford progeria syndrome (HGPS) is a rare premature aging disorder that is most commonly caused by a de novo point mutation in exon 11 of the LMNA gene, c.1824C>T, which results in an increased production of a truncated form of lamin A known as progerin. In this study, we used a mouse model to study the possibility of recovering from HGPS bone disease upon silencing of the HGPS mutation, and the potential benefits from treatment with resveratrol. We show that complete silencing of the transgenic expression of progerin normalized bone morphology and mineralization already after 7 weeks. The improvements included lower frequencies of rib fractures and callus formation, an increased number of osteocytes in remodeled bone, and normalized dentinogenesis. The beneficial effects from resveratrol treatment were less significant and to a large extent similar to mice treated with sucrose alone. However, the reversal of the dental phenotype of overgrown and laterally displaced lower incisors in HGPS mice could be attributed to resveratrol. Our results indicate that the HGPS bone defects were reversible upon suppressed transgenic expression and suggest that treatments targeting aberrant progerin splicing give hope to patients who are affected by HGPS.-Strandgren, C., Nasser, H. A., McKenna, T., Koskela, A., Tuukkanen, J., Ohlsson, C., Rozell, B., Eriksson, M. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects.
  •  
9.
  • Tiala, Inkeri, et al. (författare)
  • The PSORS1 locus gene CCHCR1 affects keratinocyte proliferation in transgenic mice
  • 2008
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 17:7, s. 1043-1051
  • Tidskriftsartikel (refereegranskat)abstract
    • The CCHCR1 gene (Coiled-Coil alpha-Helical Rod protein 1) within the major psoriasis susceptibility locus PSORS1 is a plausible candidate gene for the risk effect. We have previously generated transgenic mice overexpressing either the psoriasis-associated risk allele CCHCR1*WWCC or the normal allele of CCHCR1. All transgenic CCHCR1 mice appeared phenotypically normal, but exhibited altered expression of genes relevant to the pathogenesis of psoriasis, including upregulation of hyperproliferation markers keratins 6, 16 and 17. Here, we challenged the skin of CCHCR1 transgenic mice with wounding or 12-O-tetradecanoyl-13-acetate (TPA), treatments able to induce epidermal hyperplasia and proliferation that both are hallmarks of psoriasis. These experiments revealed that CCHCR1 regulates keratinocyte proliferation. Early wound healing on days 1 and 4 was delayed, and TPA-induced epidermal hyperproliferation was less pronounced in mice with the CCHCR1*WWCC risk allele than in mice with the normal allele or in wild-type animals. Finally, we demonstrated that overexpression of CCHCR1 affects basal keratinocyte proliferation in mice; CCHCR1*WWCC mice had less proliferating keratinocytes than the non-risk allele mice. Similarly, keratinocytes isolated from risk allele mice proliferated more slowly in culture than wild-type cells when measured by BrdU labeling and ELISA. Our data show that CCHCR1 may function as a negative regulator of keratinocyte proliferation. Thus, aberrant function of CCHCR1 may lead to abnormal keratinocyte proliferation which is a key feature of psoriatic epidermis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy