SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rubeck Jan) "

Sökning: WFRF:(Rubeck Jan)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liang, Suzhe, et al. (författare)
  • Template-Induced Growth of Sputter-Deposited Gold Nanoparticles on Ordered Porous TiO2 Thin Films for Surface-Enhanced Raman Scattering Sensors
  • 2022
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 5:5, s. 7492-7501
  • Tidskriftsartikel (refereegranskat)abstract
    • Ordered porous gold/titanium dioxide (Au/TiO2) hybrid nanostructured films are specifically interesting in large-scale applications using localized surface plasmon resonances (LSPRs) and surface-enhanced Raman scattering (SERS). Deposition of Au nanoparticles via sputter deposition is one of the promising technologies to establish optically active sites at low cost in combination with nanostructured TiO2 films. In this work, we investigate the optical response of sputter-deposited Au/TiO2 nanohybrid thin films with a focus on the plasmonic response and application as molecular sensors. The LSPR peak red shifts with an increasing thickness of deposited Au. The Raman intensity of deposited molecules, probed with rhodamine 6G (R6G), depends on the deposited gold thickness. It has its maximum at an effective Au thickness of 3.4 nm. To elucidate the origin of this behavior, we apply in situ grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the growth kinetics of Au on a TiO2 template during sputter deposition. On the basis of time-resolved GISAXS, the growth characteristics of sputter-deposited Au on a TiO2 template with a final effective Au layer thickness around the percolation threshold is described with the well-known four-stage model of nucleation and cluster formation, diffusion-mediated growth, adsorption-mediated growth, and grain growth. The maximum in SERS intensity is corroborated by the existence and optimal size of hot spots in the narrow space occurring between the sputter-deposited Au clusters, on staying below the percolation threshold. On the basis of the growth laws extracted, we give a guideline for tailoring the ordered porous Au/TiO2 nanohybrid thin films for SERS sensor applications.
  •  
2.
  • Reus, Manuel A., et al. (författare)
  • Modular slot-die coater for in situ grazing-incidence x-ray scattering experiments on thin films
  • 2024
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 0034-6748 .- 1089-7623. ; 95:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Multimodal in situ experiments during slot-die coating of thin films pioneer the way to kinetic studies on thin-film formation. They establish a powerful tool to understand and optimize the formation and properties of thin-film devices, e.g., solar cells, sensors, or LED films. Thin-film research benefits from time-resolved grazing-incidence wide- and small-angle x-ray scattering (GIWAXS/GISAXS) with a sub-second resolution to reveal the evolution of crystal structure, texture, and morphology during the deposition process. Simultaneously investigating optical properties by in situ photoluminescence measurements complements in-depth kinetic studies focusing on a comprehensive understanding of the triangular interdependency of processing, structure, and function for a roll-to-roll compatible, scalable thin-film deposition process. Here, we introduce a modular slot-die coater specially designed for in situ GIWAXS/GISAXS measurements and applicable to various ink systems. With a design for quick assembly, the slot-die coater permits the reproducible and comparable fabrication of thin films in the lab and at the synchrotron using the very same hardware components, as demonstrated in this work by experiments performed at Deutsches Elektronen-Synchrotron (DESY). Simultaneous to GIWAXS/GISAXS, photoluminescence measurements probe optoelectronic properties in situ during thin-film formation. An environmental chamber allows to control the atmosphere inside the coater. Modular construction and lightweight design make the coater mobile, easy to transport, quickly extendable, and adaptable to new beamline environments.
  •  
3.
  • Schwartzkopf, Matthias, et al. (författare)
  • In Situ Monitoring of Scale Effects on Phase Selection and Plasmonic Shifts during the Growth of AgCu Alloy Nanostructures for Anticounterfeiting Applications
  • 2022
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 5:3, s. 3832-3842
  • Tidskriftsartikel (refereegranskat)abstract
    • Tailoring of plasmon resonances is essential for applications in anticounterfeiting. This is readily achieved by tuning the composition of alloyed metal clusters; in the simplest case, binary alloys are used. Yet, one challenge is the correlation of cluster morphology and composition with the changing optoelectronic properties. Hitherto, the early stages of metal alloy nanocluster formation in immiscible binary systems such as silver and copper have been accessible by molecular dynamics (MD) simulations and transmission electron microscopy (TEM). Here, we investigate in real time the formation of supported silver, copper, and silver-copper-alloy nanoclusters during sputter deposition on poly(methyl methacrylate) by combining in situ surface-sensitive X-ray scattering with optical spectroscopy. While following the transient growth morphologies, we quantify the early stages of phase separation at the nanoscale, follow the shifts of surface plasmon resonances, and quantify the growth kinetics of the nanogranular layers at different thresholds. We are able to extract the influence of scaling effects on the nucleation and phase selection. The internal structure of the alloy cluster shows a copper-rich core/silver-rich shell structure because the copper core yields a lower mobility and higher crystallization tendency than the silver fraction. We compare our results to MD simulation and TEM data. This demonstrates a route to tailor accurately the plasmon resonances of nanosized, polymer-supported clusters which is a crucial prerequisite for anticounterfeiting.
  •  
4.
  • Schwartzkopf, Matthias, et al. (författare)
  • Real-time insight into nanostructure evolution during the rapid formation of ultra-thin gold layers on polymers
  • 2021
  • Ingår i: Nanoscale Horizons. - : ROYAL SOC CHEMISTRY. - 2055-6764 .- 2055-6756. ; 6:2, s. 132-138
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultra-thin metal layers on polymer thin films attract tremendous research interest for advanced flexible optoelectronic applications, including organic photovoltaics, light emitting diodes and sensors. To realize the large-scale production of such metal-polymer hybrid materials, high rate sputter deposition is of particular interest. Here, we witness the birth of a metal-polymer hybrid material by quantifying in situ with unprecedented time-resolution of 0.5 ms the temporal evolution of interfacial morphology during the rapid formation of ultra-thin gold layers on thin polystyrene films. We monitor average non-equilibrium cluster geometries, transient interface morphologies and the effective near-surface gold diffusion. At 1 s sputter deposition, the polymer matrix has already been enriched with 1% gold and an intermixing layer has formed with a depth of over 3.5 nm. Furthermore, we experimentally observe unexpected changes in aspect ratios of ultra-small gold clusters growing in the vicinity of polymer chains. For the first time, this approach enables four-dimensional insights at atomic scales during the gold growth under non-equilibrium conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy