SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rubenstein Richard) "

Sökning: WFRF:(Rubenstein Richard)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ward, Ashley, et al. (författare)
  • Initiators, leaders and recruitment mechanisms in the collective movements of damselfish
  • 2013
  • Ingår i: American Naturalist. - : University of Chicago Press. - 0003-0147 .- 1537-5323. ; 181:6, s. 748-760
  • Tidskriftsartikel (refereegranskat)abstract
    • Explaining how individual behavior and social interactions give rise to group-level outcomes and affect issues such as leadership is fundamental to the understanding of collective behavior. Here we examined individual and collective behavioral dynamics in groups of humbug damselfish both before and during a collective movement. During the predeparture phase, group activity increased until the collective movement occurred. Although such movements were precipitated by one individual, the success or failure of any attempt to instigate a collective movement was not solely dependent on this initiator’s behavior but on the behavior of the group as a whole. Specifically, groups were more active and less cohesive before a successful initiation attempt than before a failed attempt. Individuals who made the most attempts to initiate a collective movement during each trial were ultimately most likely to lead the collective movement. Leadership was not related to dominance but was consistent between trials. The probability of fish recruiting to a group movement initiative was an approximately linear function of the number of fish already recruited. Overall, these results are consistent with nonselective local mimetism, with the decision to leave based on a group’s, rather than any particular individual’s, readiness to leave.
  •  
2.
  • Zhang, Zhiqun, et al. (författare)
  • Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products
  • 2014
  • Ingår i: PLOS ONE. - San Francisco, USA : Public Library of Science (PLoS). - 1932-6203. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The role of systemic autoimmunity in human traumatic brain injury (TBI) and other forms of brain injuries is recognized but not well understood. In this study, a systematic investigation was performed to identify serum autoantibody responses to brain-specific proteins after TBI in humans. TBI autoantibodies showed predominant immunoreactivity against a cluster of bands from 38-50 kDa on human brain immunoblots, which were identified as GFAP and GFAP breakdown products. GFAP autoantibody levels increased by 7 days after injury, and were of the IgG subtype predominantly. Results from in vitro tests and rat TBI experiments also indicated that calpain was responsible for removing the amino and carboxyl termini of GFAP to yield a 38 kDa fragment. Additionally, TBI autoantibody staining co-localized with GFAP in injured rat brain and in primary rat astrocytes. These results suggest that GFAP breakdown products persist within degenerating astrocytes in the brain. Anti-GFAP autoantibody also can enter living astroglia cells in culture and its presence appears to compromise glial cell health. TBI patients showed an average 3.77 fold increase in anti-GFAP autoantibody levels from early (0-1 days) to late (7-10 days) times post injury. Changes in autoantibody levels were negatively correlated with outcome as measured by GOS-E score at 6 months, suggesting that TBI patients with greater anti-GFAP immune-responses had worse outcomes. Due to the long lasting nature of IgG, a test to detect anti-GFAP autoantibodies is likely to prolong the temporal window for assessment of brain damage in human patients. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy