SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rudawski Piotr) "

Sökning: WFRF:(Rudawski Piotr)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnold, Cord L., et al. (författare)
  • Spatiotemporal coupling of attosecond pulses
  • 2019
  • Ingår i: 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019. - 9781728104690 ; Part F140-CLEO_Europe 2019
  • Konferensbidrag (refereegranskat)abstract
    • Attosecond pulses in the extreme ultraviolet (XUV) spectral range are today routinely generated via high-order harmonic generation (HHG), when intense ultrashort laser pulses are focused into a gaseous generation medium. The effect is most easily understood in a semi-classical picture [1]. An electron can tunnel ionize from the distorted atomic potential, pick up kinetic energy in the laser field, potentially return to its parent ion and recombine. The excess energy is emitted as XUV photon. The process repeats for every half-cycle of the driving field, resulting in a train of attosecond pulses and in the frequency domain in the well-known, odd-order comb of harmonics. Two main families of electron trajectories leading to the same photon energy can be distinguished into 'short' and 'long', according to their time of travel in the continuum. Due to the complicated nature of the HHG process, attosecond pulses usually cannot be separated into their temporal and spatial profiles, but instead have strong chromatic aberration and are spatio-temporally coupled [2-4].
  •  
2.
  • Brizuela, Fernando, et al. (författare)
  • Efficient high order harmonic generation boosted by below threshold harmonics
  • 2013
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • High-order harmonic generation (HHG) in gases has been established as an important technique for the generation of coherent extreme ultraviolet (XUV) pulses at ultrashort time scales. Its main drawback, however, is the low conversion efficiency, setting limits for many applications, such as ultrafast coherent imaging, nonlinear processes in the XUV range, or seeded free electron lasers. Here we introduce a novel scheme based on using below-threshold harmonics, generated in a seeding cell, to boost the HHG process in a generation cell, placed further downstream in the focused laser beam. By modifying the fundamental driving field, these low-order harmonics alter the ionization step of the nonlinear HHG process. Our dual-cell scheme enhances the conversion efficiency of HHG, opening the path for the realization of robust intense attosecond XUV sources.
  •  
3.
  • Campi, Filippo, et al. (författare)
  • Design and test of a broadband split-and-delay unit for attosecond XUV-XUV pump-probe experiments.
  • 2016
  • Ingår i: Review of Scientific Instruments. - : AIP Publishing. - 1089-7623 .- 0034-6748. ; 87:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the design of a split-and-delay unit for the production of two delayed replicas of an incident extreme ultraviolet (XUV) pulse. The device features a single grazing incidence reflection in combination with attenuation of remaining infrared light co-propagating with the XUV beam, offering a high throughput without the need of introducing additional optics that would further decrease the XUV flux. To achieve the required spatial and temporal stabilities, the device is controlled by two PID-controllers monitoring the delay and the beam pointing using an optical reference laser beam, making collimation of the beam by additional optics unnecessary. Finally, we demonstrate the stability of the split-and-delay unit by performing all-reflective autocorrelation measurements on broadband few-cycle laser pulses.
  •  
4.
  • Charalambidis, Dimitris, et al. (författare)
  • The extreme light infrastructure—attosecond light pulse source (ELI-ALPS) project
  • 2017. - 9783319648392
  • Ingår i: Springer Series in Chemical Physics. - Cham : Springer International Publishing. - 0172-6218. ; :9783319648392, s. 181-218
  • Bokkapitel (refereegranskat)abstract
    • Globally, large international research infrastructures have over many decades promoted excellence in science and technology. Aligned with the international practice, the Europe Strategy Forum for Research Infrastructures (ESFRI) has developed and keeps updating a roadmap for research infrastructures. The Extreme Light Infrastructure (ELI) is one of the two large scale Laser Research Infrastructures (RI) proposed in the ESFRI Roadmap published in 2006. ELI aims to provide access to some of the most intense world-wide lasers for the international scientific user community, as well as secondary radiation and particle sources driven by them, offering to the users new interdisciplinary research opportunities. ELI is currently implemented as a distributed infrastructure in three pillars: ELI-Beamlines (ELI-BL) in Dolní Břežany, Czech Republic, ELI-Attosecond Light Pulse Source (ELI-ALPS) in Szeged, Hungary and ELI-Nuclear Physics (ELI-NP) in Magurele, Romania. This chapter is devoted to introduce the Hungarian pillar, ELI-ALPS, which will be operational in Szeged in 2018, with the primary mission to provide to the users the highest laboratory spatiotemporal resolution and a secondary mission to contribute to the technological development towards 200 petawatt (PW) lasers for high-field science, which is the ultimate goal of the ELI project. The chapter includes descriptions of the primary and secondary sources, while emphasis is given to selected examples of the scientific case of ELI-ALPS, presenting unique access offered by the technologies to be hosted in the infrastructure.
  •  
5.
  •  
6.
  • Coudert-Alteirac, Hélène, et al. (författare)
  • Micro-focusing of broadband high-order harmonic radiation by a double toroidal mirror
  • 2017
  • Ingår i: Applied Sciences (Switzerland). - : MDPI AG. - 2076-3417. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an optical system based on two toroidal mirrors in aWolter configuration to focus broadband extreme ultraviolet (XUV) radiation. Optimization of the focusing optics alignment is carried out with the aid of an XUV wavefront sensor. Back-propagation of the optimized wavefront to the focus yields a focal spot of 3.6 × 4.0 μm2 full width at half maximum, which is consistent with ray-tracing simulations that predict a minimum size of 3.0 × 3.2 μm2. This work is important for optimizing the intensity of focused high-order harmonics in order to reach the nonlinear interaction regime.
  •  
7.
  • Dacasa, Hugo, et al. (författare)
  • Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics
  • 2019
  • Ingår i: Optics Express. - 1094-4087. ; 27:3, s. 2656-2670
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to 휆/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors. We theoretically analyze the relationship between the spatial properties of the fundamental and those of the generated high-order harmonics, thus gaining insight into the fundamental mechanisms involved in high-order harmonic generation (HHG).
  •  
8.
  •  
9.
  • Harth, A., et al. (författare)
  • Few-cycle high-repetition rate OPCPA for multiphoton PEEM towards atto-PEEM
  • 2016
  • Ingår i: International Conference on Ultrafast Phenomena, UP 2016. - 9781943580187 ; Part F20-UP 2016
  • Konferensbidrag (refereegranskat)abstract
    • We present a few-cycle high-repetition rate optical parametric amplifier for multiphoton PEEM experiments on semiconductor nanowires. This parametric amplifier is also used for the generation of high-order harmonics at 200kHz for future atto-PEEM experiments.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy