SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rudoy Alexei) "

Sökning: WFRF:(Rudoy Alexei)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blomdin, Robin, 1986-, et al. (författare)
  • Glacial geomorphology of the Altai and Western Sayan Mountains, Central Asia
  • 2016
  • Ingår i: Journal of Maps. - : Informa UK Limited. - 1744-5647. ; 12:1, s. 123-136
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we present a map of the glacial geomorphology of the Altai andWestern Sayan Mountains, covering an area of almost 600,000 km2. Although numerous studies provide evidence for restricted Pleistocene glaciations in this area, others have hypothesized the past existence of an extensive ice sheet. To provide a framework for accurate glacial reconstructions of the Altai and Western Sayan Mountains, we present a map at a scale of 1:1,000,000 based on a mapping from 30 m resolution ASTER DEM and 15 m/30 mresolution Landsat ETM+ satellite imagery. Four landform classes have been mapped: marginal moraines, glacial lineations, hummocky terrain, and glacial valleys. Our mapping reveals an abundance of glacial erosional and depositional landforms. The distribution of these glacial landforms indicates that the Altai and Western Sayan Mountains have experienced predominantly alpine-style glaciations, with some small ice caps centred on the higher mountain peaks. Large marginal moraine complexes mark glacial advances in intermontane basins. By tracing the outer limits of present-day glaciers, glacial valleys, and moraines, we estimate that the past glacier coverage have totalled to 65,000 km2 (10.9% of the mapped area), whereas present-day glacier coverage totals only 1300 km2 (0.2% of the mapped area). This demonstrates the usefulness of remote sensing techniques for mapping the glacial geomorphology in remote mountain areas and for quantifying the past glacier dimensions. The glacial geomorphological map presented here will be used for further detailed reconstructions of the paleoglaciology and paleoclimate of the region.
  •  
2.
  • Blomdin, Robin, 1986-, et al. (författare)
  • Paleoglaciation on opposite flanks of the Ikh-Turgen Mountains, Central Asia : Importance of style of moraine deposition for 10-Be surface exposure dating
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The ages of marginal moraines that record extensive glacier expansions across the Altai Mountains of Central Asia are poorly documented. We present 18 10Be exposure ages from moraines in valleys on opposite flanks of the Ikh-Turgen Mountains. On the eastern side, exposure ages from a latero-frontal moraine indicate deglaciation during MIS 3 (45.3±2.7 ka) and MIS 2 (22.8±3.5 ka). Corresponding exposure ages, from the western side, indicate a more complex story with large scatter (~14-53 ka). Owing to their close proximity, the paleoglaciers should have responded similarly to climate forcing, yet they exhibited a distinctly different behavior. We propose that differences in glacier dynamics caused differences in ice-marginal depositional environments, explaining the scatter in exposure ages on the western side. This study shows the importance of style of deposition in chronological studies of glacial landforms and demonstrates that certain moraine types can be difficult to use as paleoclimate proxies.
  •  
3.
  • Gribenski, Natacha, 1986-, et al. (författare)
  • Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai
  • 2016
  • Ingår i: Quaternary Science Reviews. - : Elsevier BV. - 0277-3791 .- 1873-457X. ; 149, s. 288-305
  • Tidskriftsartikel (refereegranskat)abstract
    • The Southern part of the Russian Altai Mountains is recognized for its evidence for catastrophic glacial lake outbursts. However, little is known about the late Pleistocene paleoglacial history, despite the interest in such reconstructions for constraining paleoclimate. In this study, we present a detailed paleoglaciological reconstruction of the Chagan Uzun Valley, in the Russian Altai Mountains, combining for the first time detailed geomorphological mapping, sedimentological logging, and in situ cosmogenic 10Be and 26Al surface exposure dating of glacially-transported boulders. The Chagan Uzun Valley exhibits the most impressive glacial landforms of this sector of the Altai, with extensive lobate moraine belts deposited in the intramontane Chuja Basin, reflecting a series of pronounced former glacial advances. Observations of “hillside-scale” folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, strongly indicate that these moraine belts were formed during surge-like events. Identification of surge-related features is essential for paleoclimate inference because these features correspond to a glacier system that is not in equilibrium with the contemporary climate, but instead largely influenced by various internal and external factors. Therefore, no strict relationship can be established between climatic variables and the pronounced distal glacial extent observed in the Chagan Uzun Valley/Chuja basin. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley were likely deposited during retreat of temperate valley glaciers, close to equilibrium with climate, and so most probably triggered by a general warming. Cosmogenic ages associated with the outermost, innermost, and intermediate stages all indicate deposition times clustered around 19 ka. However, the actual deposition time of the outermost moraine may slightly predate the 10Be ages due to shielding caused by subsequent lake water coverage. This chronology indicates a Marine Isotope Stage (MIS) 2 last maximum extent of the Chagan Uzun Glacier, and an onset of the deglaciation around 19 ka. This is consistent with other regional paleoclimate proxy records and with the Northern Hemisphere glaciation chronology. Finally, this study also highlights the highly dynamic environment in this area, with complex interactions between glacial events and the formation and drainage of lakes.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy