SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rugenstein Maria) "

Sökning: WFRF:(Rugenstein Maria)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fiedler, Stephanie, et al. (författare)
  • Simulated Tropical Precipitation Assessed across Three Major Phases of the Coupled Model Intercomparison Project (CMIP)
  • 2020
  • Ingår i: Monthly Weather Review. - 0027-0644 .- 1520-0493. ; 148:9, s. 3653-3680
  • Tidskriftsartikel (refereegranskat)abstract
    • The representation of tropical precipitation is evaluated across three generations of models participating in phases 3, 5, and 6 of the Coupled Model Intercomparison Project (CMIP). Compared to state-of-the-art observations, improvements in tropical precipitation in the CMIP6 models are identified for some metrics, but we find no general improvement in tropical precipitation on different temporal and spatial scales. Our results indicate overall little changes across the CMIP phases for the summer monsoons, the double-ITCZ bias, and the diurnal cycle of tropical precipitation. We find a reduced amount of drizzle events in CMIP6, but tropical precipitation occurs still too frequently. Continuous improvements across the CMIP phases are identified for the number of consecutive dry days, for the representation of modes of variability, namely, the Madden–Julian oscillation and El Niño–Southern Oscillation, and for the trends in dry months in the twentieth century. The observed positive trend in extreme wet months is, however, not captured by any of the CMIP phases, which simulate negative trends for extremely wet months in the twentieth century. The regional biases are larger than a climate change signal one hopes to use the models to identify. Given the pace of climate change as compared to the pace of model improvements to simulate tropical precipitation, we question the past strategy of the development of the present class of global climate models as the mainstay of the scientific response to climate change. We suggest the exploration of alternative approaches such as high-resolution storm-resolving models that can offer better prospects to inform us about how tropical precipitation might change with anthropogenic warming.
  •  
2.
  • Fredriksen, Hege-Beate, et al. (författare)
  • 21st Century Scenario Forcing Increases More for CMIP6 Than CMIP5 Models
  • 2023
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 50:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the Coupled Model Intercomparison Project 6 (CMIP6) protocol provides an experiment to estimate effective radiative forcing (ERF), it is only quantified for few models. We present new estimates of ERF for models participating in CMIP6 by applying the method developed in Fredriksen et al. (2021, https://doi.org/10.1029/2020JD034145), and validate our approach with available fixed-SST forcing estimates. We estimate ERF for experiments with abrupt changes of CO2, 1% increase of CO2, historical forcings, and future scenarios, and demonstrate that CMIP6 ERF is lower than CMIP5 ERF at the end of the historical period, but grows faster than CMIP5 in the future scenarios, ending up at higher levels than CMIP5 at the end of the 21st century. The simulated radiative efficiency of CO2 has not changed much, suggesting that the larger future increase in CO2 concentrations in CMIP6 compared to CMIP5 is important for explaining the forcing difference.
  •  
3.
  • Jönsson, Aiden, 1991-, et al. (författare)
  • A recipe for simulating the observed interhemispheric albedo symmetry and constraining cloud radiative feedbacks
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Earth’s albedo has remained symmetric between the northern and southern hemispheres over the satellite record, a feature that climate models have difficulty capturing. We investigate causes of these biases using a perturbed parameter ensemble of atmospheric simulations to probe the sensitivity of the albedo symmetry to cloud properties and the processes that control them. We find that the most significant parameters to simulated albedo symmetry impact precipitation, turbulent dissipation, and sea salt aerosol emissions. Constraining shortwave cloud feedbacks using the observed albedo symmetry leads to a range of +0.61±0.24 W m-2 K-1 (66% confidence). These are stronger than the model’s control settings due to greater loss of subtropical low clouds and weaker negative cloud phase feedback. Comparing the constrained and control parameter settings shows a preference towards settings that would reduce the control simulation’s biases, indicating that the constraint can select for representations that capture the observed cloud cover.
  •  
4.
  • Rugenstein, Maria, et al. (författare)
  • Equilibrium Climate Sensitivity Estimated by Equilibrating Climate Models
  • 2020
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 47:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The methods to quantify equilibrium climate sensitivity are still debated. We collect millennial-length simulations of coupled climate models and show that the global mean equilibrium warming is higher than those obtained using extrapolation methods from shorter simulations. Specifically, 27 simulations with 15 climate models forced with a range of CO2 concentrations show a median 17% larger equilibrium warming than estimated from the first 150 years of the simulations. The spatial patterns of radiative feedbacks change continuously, in most regions reducing their tendency to stabilizing the climate. In the equatorial Pacific, however, feedbacks become more stabilizing with time. The global feedback evolution is initially dominated by the tropics, with eventual substantial contributions from the mid-latitudes. Time-dependent feedbacks underscore the need of a measure of climate sensitivity that accounts for the degree of equilibration, so that models, observations, and paleo proxies can be adequately compared and aggregated to estimate future warming.
  •  
5.
  • Rugenstein, Maria, et al. (författare)
  • LongRunMIP : Motivation and Design for a Large Collection of Millennial-Length AOGCM Simulations
  • 2019
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 100:12, s. 2551-2570
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a model intercomparison project, LongRunMIP, the first collection of millennial-length (1,000+ years) simulations of complex coupled climate models with a representation of ocean, atmosphere, sea ice, and land surface, and their interactions. Standard model simulations are generally only a few hundred years long. However, modeling the long-term equilibration in response to radiative forcing perturbation is important for understanding many climate phenomena, such as the evolution of ocean circulation, time- and temperature-dependent feedbacks, and the differentiation of forced signal and internal variability. The aim of LongRunMIP is to facilitate research into these questions by serving as an archive for simulations that capture as much of this equilibration as possible. The only requirement to participate in LongRunMIP is to contribute a simulation with elevated, constant CO2 forcing that lasts at least 1,000 years. LongRunMIP is an MIP of opportunity in that the simulations were mostly performed prior to the conception of the archive without an agreed-upon set of experiments. For most models, the archive contains a preindustrial control simulation and simulations with an idealized (typically abrupt) CO2 forcing. We collect 2D surface and top-of-atmosphere fields and 3D ocean temperature and salinity fields. Here, we document the collection of simulations and discuss initial results, including the evolution of surface and deep ocean temperature and cloud radiative effects. As of October 2019, the collection includes 50 simulations of 15 models by 10 modeling centers. The data of LongRunMIP are publicly available. We encourage submissions of more simulations in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy