SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rupprechter G.) "

Sökning: WFRF:(Rupprechter G.)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Datler, M., et al. (författare)
  • Visualizing catalyst heterogeneity by a multifrequencial oscillating reaction
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well documented that different surface structures of catalytically active metals may exhibit different catalytic properties. This is typically examined by comparing the catalytic activities and/or selectivities of various well-defined smooth and stepped/kinked single crystal surfaces. Here we report the direct observation of the heterogeneity of active polycrystalline surfaces under reaction conditions, which is manifested by multifrequential oscillations during hydrogen oxidation over rhodium, imaged in situ by photoemission electron microscopy. Each specific surface structure, i.e. the crystallographically different µm-sized domains of rhodium, exhibits an individual spiral pattern and oscillation frequency, despite the global diffusional coupling of the surface reaction. This reaction behavior is attributed to the ability of stepped surfaces of high-Miller-index domains to facilitate the formation of subsurface oxygen, serving as feedback mechanism of the observed oscillations. The current experimental findings, backed by microkinetic modeling, may open an alternative approach towards addressing the structure-sensitivity of heterogeneous surfaces.
  •  
2.
  • Pramhaas, Verena, et al. (författare)
  • Interplay between CO Disproportionation and Oxidation: On the Origin of the CO Reaction Onset on Atomic Layer Deposition-Grown Pt/ZrO2Model Catalysts
  • 2021
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 11:1, s. 208-214
  • Tidskriftsartikel (refereegranskat)abstract
    • Pt/ZrO2 model catalysts were prepared by atomic layer deposition (ALD) and examined at mbar pressure by operando sum frequency generation (SFG) spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) combined with differentially pumped mass spectrometry (MS). ALD enables creating model systems ranging from Pt nanoparticles to bulk-like thin films. Polarization-dependent SFG of CO adsorption reveals both the adsorption configuration and the Pt particle morphology. By combining experimental data with ab initio density functional theory (DFT) calculations, we show that the CO reaction onset is determined by a delicate balance between CO disproportionation (Boudouard reaction) and oxidation. CO disproportionation occurs on low-coordinated Pt sites, but only at high CO coverages and when the remaining C atom is stabilized by a favorable coordination. Thus, under the current conditions, initial CO oxidation is found to be strongly influenced by the removal of carbon deposits formed through disproportionation mechanisms rather than being determined by the CO and oxygen inherent activity. Accordingly, at variance with the general expectation, rough Pt nanoparticles are seemingly less active than smoother Pt films. The applied approach enables bridging both the "materials and pressure gaps".
  •  
3.
  • Rameshan, C., et al. (författare)
  • In situ NAP-XPS spectroscopy during methane dry reforming on ZrO2/Pt(1 1 1) inverse model catalyst
  • 2018
  • Ingår i: Journal of Physics: Condensed Matter. - 0953-8984. ; 30:26
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to the need of sustainable energy sources, methane dry reforming is a useful reaction for conversion of the greenhouse gases CH4 and CO2 to synthesis gas (CO + H2). Syngas is the basis for a wide range of commodity chemicals and can be utilized for fuel production via Fischer-Tropsch synthesis. The current study focuses on spectroscopic investigations of the surface and reaction properties of a ZrO2/Pt inverse model catalyst, i.e. ZrO2 particles (islands) grown on a Pt(1 1 1) single crystal, with emphasis on in situ near ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) during MDR reaction. In comparison to technological systems, model catalysts facilitate characterization of the surface (oxidation) state, surface adsorbates, and the role of the metal-support interface. Using XPS and infrared reflection absorption spectroscopy we demonstrated that under reducing conditions (UHV or CH4) the ZrO2 particles transformed to an ultrathin ZrO2 film that started to cover (wet) the Pt surface in an SMSI-like fashion, paralleled by a decrease in surface/interface oxygen. In contrast, (more oxidizing) dry reforming conditions with a 1:1 ratio of CH4 and CO2 were stabilizing the ZrO2 particles on the model catalyst surface (or were even reversing the strong metal support interaction (SMSI) effect), as revealed by in situ XPS. Carbon deposits resulting from CH4 dissociation were easily removed by CO2 or by switching to dry reforming conditions (673-873 K). Thus, at these temperatures the active Pt surface remained free of carbon deposits, also preserving the ZrO2/Pt interface.
  •  
4.
  • Suchorski, Y., et al. (författare)
  • Resolving multifrequential oscillations and nanoscale interfacet communication in single-particle catalysis
  • 2021
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 372:6548, s. 1314-1318
  • Tidskriftsartikel (refereegranskat)abstract
    • In heterogeneous catalysis research, the reactivity of individual nanofacets of single particles is typically not resolved. We applied in situ field electron microscopy to the apex of a curved rhodium crystal (radius of 650 nanometers), providing high spatial (∼2 nanometers) and time resolution (∼2 milliseconds) of oscillatory catalytic hydrogen oxidation, to image adsorbed species and reaction fronts on the individual facets. Using ionized water as the imaging species, the active sites were directly imaged with field ion microscopy. The catalytic behavior of differently structured nanofacets and the extent of coupling between them were monitored individually. We observed limited interfacet coupling, entrainment, frequency locking, and reconstruction-induced collapse of spatial coupling. The experimental results are backed up by microkinetic modeling of time-dependent oxygen species coverages and oscillation frequencies.
  •  
5.
  • Suchorski, Y., et al. (författare)
  • Surface-structure libraries: multifrequential oscillations in catalytic hydrogen oxidation on rhodium
  • 2019
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:7, s. 4217-4227
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifrequential oscillating spatiotemporal patterns in the catalytic hydrogen oxidation on rhodium have been observed in situ in the 10 -6 mbar pressure range using photoemission electron microscopy. The effect is manifested by periodic chemical waves, which travel over the polycrystalline Rh surface and change their oscillation frequency while crossing boundaries between different Rh(hkl) domains. Each crystallographically specific μm-sized Rh(hkl) domain exhibits an individual wave pattern and oscillation frequency, despite the global diffusional coupling of the surface reaction, altogether creating a structure library. This unique reaction behavior is attributed to the ability of stepped surfaces of high-Miller-index domains to facilitate the formation of subsurface oxygen, serving as a feedback mechanism of kinetic oscillations. Formation of a network of subsurface oxygen as a result of colliding reaction fronts was observed in situ. Microkinetic model analysis was used to rationalize the observed effects and to reveal the relation between the barriers for surface oxidation and oscillation frequency. Structural limits of the oscillations, the existence range of oscillations, as well as the effect of varying hydrogen pressure are demonstrated.
  •  
6.
  • Vogel, D., et al. (författare)
  • Local Catalytic Ignition during CO Oxidation on Low-Index Pt and Pd Surfaces: A Combined PEEM, MS, and DFT Study
  • 2012
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 51:40, s. 10041-10044
  • Tidskriftsartikel (refereegranskat)abstract
    • Shedding light on light-off: Photoemission electron microscopy, DFT, and microkinetic modeling were used to examine the local kinetics in the CO oxidation on individual grains of a polycrystalline sample. It is demonstrated that catalytic ignition ("light-off") occurs easier on Pd(hkl) domains than on corresponding Pt(hkl) domains. The isothermal determination of kinetic transitions, commonly used in surface science, is fully consistent with the isobaric reactivity monitoring applied in technical catalysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
  •  
7.
  • Winkler, P., et al. (författare)
  • Coexisting multi-states in catalytic hydrogen oxidation on rhodium
  • 2021
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Catalytic hydrogen oxidation on a polycrystalline rhodium foil used as a surface structure library is studied by scanning photoelectron microscopy (SPEM) in the 10−6 mbar pressure range, yielding spatially resolved X-ray photoemission spectroscopy (XPS) measurements. Here we report an observation of a previously unknown coexistence of four different states on adjacent differently oriented domains of the same Rh sample at the exactly same conditions. A catalytically active steady state, a catalytically inactive steady state and multifrequential oscillating states are simultaneously observed. Our results thus demonstrate the general possibility of multi-states in a catalytic reaction. This highly unusual behaviour is explained on the basis of peculiarities of the formation and depletion of subsurface oxygen on differently structured Rh surfaces. The experimental findings are supported by mean-field micro-kinetic modelling. The present observations raise the interdisciplinary question of how self-organising dynamic processes in a heterogeneous system are influenced by the permeability of the borders confining the adjacent regions.
  •  
8.
  • Zeininger, Johannes, et al. (författare)
  • Single-Particle Catalysis: Revealing Intraparticle Pacemakers in Catalytic H 2 Oxidation on Rh
  • 2021
  • Ingår i: ACS Catalysis. - : American Chemical Society (ACS). - 2155-5435. ; 11:15, s. 10020-10027
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-sustained oscillations in H2 oxidation on a Rh nanotip mimicking a single catalytic nanoparticle were studied by in situ field emission microscopy (FEM). The observed spatio-Temporal oscillations result from the coupling of subsurface oxide formation/depletion with reaction front propagation. An original sophisticated method for tracking kinetic transition points allowed the identification of local pacemakers, initiating kinetic transitions and the nucleation of reaction fronts, with much higher temporal resolution than conventional processing of FEM video files provides. The pacemakers turned out to be specific surface atomic configurations at the border between strongly corrugated Rh{973} regions and adjacent relatively flat terraces. These structural ensembles are crucial for reactivity: while the corrugated region allows sufficient oxygen incorporation under the Rh surface, the flat terrace provides sufficient hydrogen supply required for the kinetic transition, highlighting the importance of interfacet communication. The experimental observations are complemented by mean-field microkinetic modeling. The insights into the initiation and propagation of kinetic transitions on a single catalytic nanoparticle demonstrate how in situ monitoring of an ongoing reaction on individual nanofacets can single out active configurations, especially when combined with atomically resolving the nanoparticle surface by field ion microscopy (FIM).
  •  
9.
  • Zorn, K., et al. (författare)
  • CO Oxidation on Technological Pd-Al2O3 Catalysts: Oxidation State and Activity
  • 2011
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 115:4, s. 1103-1111
  • Tidskriftsartikel (refereegranskat)abstract
    • The specific CO oxidation activity of palladium versus palladium oxide is still controversially discussed. In this study, 5 wt. % Pd-gamma-Al2O3 catalysts were utilized to investigate the effect of the palladium oxidation state on the CO oxidation activity. Comprehensive in situ and ex situ characterization of different alumina supported PdOx (x = 0-1) phases (by HR-TEM, XRD, and FTIR spectroscopy), combined with kinetic measurements and DFT calculations of CO adsorption, allowed us to assess the catalytic activity of the different PdOx (x = 0-1) species: Supported Pd-0 and substoichiometric PdOx
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy