SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruprecht Colin) "

Sökning: WFRF:(Ruprecht Colin)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ruprecht, Colin, et al. (författare)
  • Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry
  • 2014
  • Ingår i: Journal of Visualized Experiments. - : MyJove Corporation. - 1940-087X. ; :87, s. e51393-
  • Tidskriftsartikel (refereegranskat)abstract
    • The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
  •  
2.
  •  
3.
  • Senf, Deborah, et al. (författare)
  • Tailormade Polysaccharides with Defined Branching Patterns: Enzymatic Polymerization of Arabinoxylan Oligosaccharides
  • 2018
  • Ingår i: Angewandte Chemie - International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 57:37, s. 11987-11992
  • Tidskriftsartikel (refereegranskat)abstract
    • The heterogeneous nature of non-cellulosic polysaccharides, such as arabinoxylan, makes it difficult to correlate molecular structure with macroscopic properties. To study the impact of specific structural features of the polysaccharides on crystallinity or affinity to other cell wall components, collections of polysaccharides with defined repeating units are required. Herein, a chemoenzymatic approach to artificial arabinoxylan polysaccharides with systematically altered branching patterns is described. The polysaccharides were obtained by glycosynthase-catalyzed polymerization of glycosyl fluorides derived from arabinoxylan oligosaccharides. X-ray diffraction and adsorption experiments on cellulosic surfaces revealed that the physicochemical properties of the synthetic polysaccharides strongly depend on the specific nature of their substitution patterns. The artificial polysaccharides allow structure–property relationship studies that are not accessible by other means.
  •  
4.
  • Xue, Weiya, et al. (författare)
  • Paramutation-like interaction of T-DNA loci in arabidopsis
  • 2012
  • Ingår i: PLOS ONE. - : Public library of science. - 1932-6203. ; 7:12, s. e51651-
  • Tidskriftsartikel (refereegranskat)abstract
    • In paramutation, epigenetic information is transferred from one allele to another to create a gene expression state which is stably inherited over generations. Typically, paramutation describes a phenomenon where one allele of a gene down-regulates the expression of another allele. Paramutation has been described in several eukaryotes and is best understood in plants. Here we describe an unexpected paramutation-like trans SALK T-DNA interaction in Arabidopsis. Unlike most of the previously described paramutations, which led to gene silencing, the trans SALK T-DNA interaction caused an increase in the transcript levels of the endogenous gene (COBRA) where the T-DNA was inserted. This increased COBRA expression state was stably inherited for several generations and led to the partial suppression of the cobra phenotype. DNA methylation was implicated in this trans SALK T-DNA interaction since mutation of the DNA methyltransferase 1 in the suppressed cobra caused a reversal of the suppression. In addition, null mutants of the DNA demethylase ROS1 caused a similar COBRA transcript increase in the cobra SALK T-DNA mutant as the trans T-DNA interaction. Our results provide a new example of a paramutation-like trans T-DNA interaction in Arabidopsis, and establish a convenient hypocotyl elongation assay to study this phenomenon. The results also alert to the possibility of unexpected endogenous transcript increase when two T-DNAs are combined in the same genetic background. Citation: Xue W, Ruprecht C, Street N, Hematy K, Chang C, et al. (2012) Paramutation-Like Interaction of T-DNA Loci in Arabidopsis. PLoS ONE 7(12): e51651. doi:10.1371/journal.pone.0051651
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy