SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Russell K.~S.) "

Sökning: WFRF:(Russell K.~S.)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Atwood, W. B., et al. (författare)
  • THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION
  • 2009
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 697:2, s. 1071-1102
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Area Telescope (Fermi/LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view (FoV), high-energy gamma-ray telescope, covering the energy range from below 20 MeV to more than 300 GeV. The LAT was built by an international collaboration with contributions from space agencies, high-energy particle physics institutes, and universities in France, Italy, Japan, Sweden, and the United States. This paper describes the LAT, its preflight expected performance, and summarizes the key science objectives that will be addressed. On-orbit performance will be presented in detail in a subsequent paper. The LAT is a pair-conversion telescope with a precision tracker and calorimeter, each consisting of a 4 x 4 array of 16 modules, a segmented anticoincidence detector that covers the tracker array, and a programmable trigger and data acquisition system. Each tracker module has a vertical stack of 18 (x, y) tracking planes, including two layers (x and y) of single-sided silicon strip detectors and high-Z converter material (tungsten) per tray. Every calorimeter module has 96 CsI(Tl) crystals, arranged in an eight-layer hodoscopic configuration with a total depth of 8.6 radiation lengths, giving both longitudinal and transverse information about the energy deposition pattern. The calorimeter's depth and segmentation enable the high-energy reach of the LAT and contribute significantly to background rejection. The aspect ratio of the tracker (height/width) is 0.4, allowing a large FoV (2.4 sr) and ensuring that most pair-conversion showers initiated in the tracker will pass into the calorimeter for energy measurement. Data obtained with the LAT are intended to (1) permit rapid notification of high-energy gamma-ray bursts and transients and facilitate monitoring of variable sources, (2) yield an extensive catalog of several thousand high-energy sources obtained from an all-sky survey, (3) measure spectra from 20 MeV to more than 50 GeV for several hundred sources, (4) localize point sources to 0.3-2 arcmin, (5) map and obtain spectra of extended sources such as SNRs, molecular clouds, and nearby galaxies, (6) measure the diffuse isotropic gamma-ray background up to TeV energies, and (7) explore the discovery space for dark matter.
  •  
2.
  • Jabbari, E., et al. (författare)
  • Diagnosis across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome
  • 2020
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6149 .- 2168-6157. ; 77:3, s. 377-387
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance Atypical parkinsonian syndromes (APS), including progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), and multiple system atrophy (MSA), may be difficult to distinguish in early stages and are often misdiagnosed as Parkinson disease (PD). The diagnostic criteria for PSP have been updated to encompass a range of clinical subtypes but have not been prospectively studied. Objective To define the distinguishing features of PSP and CBS subtypes and to assess their usefulness in facilitating early diagnosis and separation from PD. Design, Setting, Participants This cohort study recruited patients with APS and PD from movement disorder clinics across the United Kingdom from September 1, 2015, through December 1, 2018. Patients with APS were stratified into the following groups: those with Richardson syndrome (PSP-RS), PSP-subcortical (including PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (including PSP-frontal and PSP-CBS overlap subtypes), MSA-parkinsonism, MSA-cerebellar, CBS–Alzheimer disease (CBS-AD), and CBS–non-AD. Data were analyzed from February 1, through May 1, 2019. Main Outcomes and Measures Baseline group comparisons used (1) clinical trajectory; (2) cognitive screening scales; (3) serum neurofilament light chain (NF-L) levels; (4) TRIM11, ApoE, and MAPT genotypes; and (5) volumetric magnetic resonance imaging measures. Results A total of 222 patients with APS (101 with PSP, 55 with MSA, 40 with CBS, and 26 indeterminate) were recruited (129 [58.1%] male; mean [SD] age at recruitment, 68.3 [8.7] years). Age-matched control participants (n=76) and patients with PD (n=1967) were included for comparison. Concordance between the antemortem clinical and pathologic diagnoses was achieved in 12 of 13 patients with PSP and CBS (92.3%) undergoing postmortem evaluation. Applying the Movement Disorder Society PSP diagnostic criteria almost doubled the number of patients diagnosed with PSP from 58 to 101. Forty-nine of 101 patients with reclassified PSP (48.5%) did not have the classic PSP-RS subtype. Patients in the PSP-subcortical group had a longer diagnostic latency and a more benign clinical trajectory than those in PSP-RS and PSP-cortical groups. The PSP-subcortical group was distinguished from PSP-cortical and PSP-RS groups by cortical volumetric magnetic resonance imaging measures (area under the curve [AUC], 0.84-0.89), cognitive profile (AUC, 0.80-0.83), serum NF-L level (AUC, 0.75-0.83), and TRIM11 rs564309 genotype. Midbrain atrophy was a common feature of all PSP groups. Eight of 17 patients with CBS (47.1%) undergoing cerebrospinal fluid analysis were identified as having the CBS-AD subtype. Patients in the CBS-AD group had a longer diagnostic latency, relatively benign clinical trajectory, greater cognitive impairment, and higher APOE-ε4 allele frequency than those in the CBS–non-AD group (AUC, 0.80-0.87; P<.05). Serum NF-L levels distinguished PD from all PSP and CBS cases combined (AUC, 0.80; P<.05). Conclusions and Relevance These findings suggest that studies focusing on the PSP-RS subtype are likely to miss a large number of patients with underlying PSP tau pathology. Analysis of cerebrospinal fluid defined a distinct CBS-AD subtype. The PSP and CBS subtypes have distinct characteristics that may enhance their early diagnosis.
  •  
3.
  •  
4.
  •  
5.
  • Street, D., et al. (författare)
  • Progression of atypical parkinsonian syndromes: PROSPECT-M-UK study implications for clinical trials
  • 2023
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 146:8, s. 3232-3242
  • Tidskriftsartikel (refereegranskat)abstract
    • Street et al. compare candidate clinical trial end points in progressive supranuclear palsy, multiple system atrophy, corticobasal syndrome and related disorders. Neuroimaging metrics generally enable lower sample sizes than cognitive and functional measures, although optimal outcome measures vary by disease and subtype. The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 +/- 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.
  •  
6.
  • Vincentelli, Federico M., et al. (författare)
  • A shared accretion instability for black holes and neutron stars
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 615:7950, s. 45-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Accretion disks around compact objects are expected to enter an unstable phase at high luminosity1. One instability may occur when the radiation pressure generated by accretion modifies the disk viscosity, resulting in the cyclic depletion and refilling of the inner disk on short timescales2. Such a scenario, however, has only been quantitatively verified for a single stellar-mass black hole3-5. Although there are hints of these cycles in a few isolated cases6-10, their apparent absence in the variable emission of most bright accreting neutron stars and black holes has been a continuing puzzle11. Here we report the presence of the same multiwavelength instability around an accreting neutron star. Moreover, we show that the variability across the electromagnetic spectrum-from radio to X-ray-of both black holes and neutron stars at high accretion rates can be explained consistently if the accretion disks are unstable, producing relativistic ejections during transitions that deplete or refill the inner disk. Such a new association allows us to identify the main physical components responsible for the fast multiwavelength variability of highly accreting compact objects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy