SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Russnes Hege) "

Sökning: WFRF:(Russnes Hege)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lien, Tonje G., et al. (författare)
  • Sample preparation approach influences pam50 risk of recurrence score in early breast cancer
  • 2021
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 13:23
  • Tidskriftsartikel (refereegranskat)abstract
    • The PAM50 gene expression subtypes and the associated risk of recurrence (ROR) score are used to predict the risk of recurrence and the benefits of adjuvant therapy in early-stage breast cancer. The Prosigna assay includes the PAM50 subtypes along with their clinicopathological fea-tures, and is approved for treatment recommendations for adjuvant hormonal therapy and chemotherapy in hormone-receptor-positive early breast cancer. The Prosigna test utilizes RNA extracted from macrodissected tumor cells obtained from formalin-fixed, paraffin-embedded (FFPE) tissue sections. However, RNA extracted from fresh-frozen (FF) bulk tissue without macrodissection is widely used for research purposes, and yields high-quality RNA for downstream analyses. To in-vestigate the impact of the sample preparation approach on ROR scores, we analyzed 94 breast carcinomas included in an observational study that had available gene expression data from macro-dissected FFPE tissue and FF bulk tumor tissue, along with the clinically approved Prosigna scores for the node-negative, hormone-receptor-positive, HER2-negative cases (n = 54). ROR scores were calculated in R; the resulting two sets of scores from FFPE and FF samples were compared, and treatment recommendations were evaluated. Overall, ROR scores calculated based on the macro-dissected FFPE tissue were consistent with the Prosigna scores. However, analyses from bulk tissue yielded a higher proportion of cases classified as normal-like; these were samples with relatively low tumor cellularity, leading to lower ROR scores. When comparing ROR scores (low, intermedi-ate, and high), discordant cases between the two preparation approaches were revealed among the luminal tumors; the recommended treatment would have changed in a minority of cases.
  •  
2.
  • Tekpli, Xavier, et al. (författare)
  • An independent poor-prognosis subtype of breast cancer defined by a distinct tumor immune microenvironment
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • How mixtures of immune cells associate with cancer cell phenotype and affect pathogenesis is still unclear. In 15 breast cancer gene expression datasets, we invariably identify three clusters of patients with gradual levels of immune infiltration. The intermediate immune infiltration cluster (Cluster B) is associated with a worse prognosis independently of known clinicopathological features. Furthermore, immune clusters are associated with response to neoadjuvant chemotherapy. In silico dissection of the immune contexture of the clusters identified Cluster A as immune cold, Cluster C as immune hot while Cluster B has a pro-tumorigenic immune infiltration. Through phenotypical analysis, we find epithelial mesenchymal transition and proliferation associated with the immune clusters and mutually exclusive in breast cancers. Here, we describe immune clusters which improve the prognostic accuracy of immune contexture in breast cancer. Our discovery of a novel independent prognostic factor in breast cancer highlights a correlation between tumor phenotype and immune contexture.
  •  
3.
  • Barjesteh van Waalwijk van Doorn-Khosrovani, Sahar, et al. (författare)
  • PCM4EU and PRIME-ROSE : Collaboration for implementation of precision cancer medicine in Europe
  • 2024
  • Ingår i: Acta Oncologica. - 1651-226X .- 1651-226X. ; 63, s. 385-391
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: In the two European Union (EU)-funded projects, PCM4EU (Personalized Cancer Medicine for all EU citizens) and PRIME-ROSE (Precision Cancer Medicine Repurposing System Using Pragmatic Clinical Trials), we aim to facilitate implementation of precision cancer medicine (PCM) in Europe by leveraging the experience from ongoing national initiatives that have already been particularly successful. PATIENTS AND METHODS: PCM4EU and PRIME-ROSE gather 17 and 24 partners, respectively, from 19 European countries. The projects are based on a network of Drug Rediscovery Protocol (DRUP)-like clinical trials that are currently ongoing or soon to start in 11 different countries, and with more trials expected to be established soon. The main aims of both the projects are to improve implementation pathways from molecular diagnostics to treatment, and reimbursement of diagnostics and tumour-tailored therapies to provide examples of best practices for PCM in Europe. RESULTS: PCM4EU and PRIME-ROSE were launched in January and July 2023, respectively. Educational materials, including a podcast series, are already available from the PCM4EU website (http://www.pcm4eu.eu). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024. CONCLUSION: European collaboration can facilitate the implementation of PCM and thereby provide affordable and equitable access to precision diagnostics and matched therapies for more patients. ble from the PCM4EU website (http://www.pcm4eu.eu). The first reports, including an overview of requirements for the reimbursement systems in participating countries and a guide on patient involvement, are expected to be published in 2024. CONCLUSION: European collaboration can facilitate the implementation of PCM and thereby provide affordable and equitable access to precision diagnostics and matched therapies for more patients.
  •  
4.
  • Glodzik, Dominik, et al. (författare)
  • A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers
  • 2017
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:3, s. 341-348
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatic rearrangements contribute to the mutagenized landscape of cancer genomes. Here, we systematically interrogated rearrangements in 560 breast cancers by using a piecewise constant fitting approach. We identified 33 hotspots of large (>100 kb) tandem duplications, a mutational signature associated with homologous-recombination-repair deficiency. Notably, these tandem-duplication hotspots were enriched in breast cancer germline susceptibility loci (odds ratio (OR) = 4.28) and breast-specific 'super-enhancer' regulatory elements (OR = 3.54). These hotspots may be sites of selective susceptibility to double-strand-break damage due to high transcriptional activity or, through incrementally increasing copy number, may be sites of secondary selective pressure. The transcriptomic consequences ranged from strong individual oncogene effects to weak but quantifiable multigene expression effects. We thus present a somatic-rearrangement mutational process affecting coding sequences and noncoding regulatory elements and contributing a continuum of driver consequences, from modest to strong effects, thereby supporting a polygenic model of cancer development.
  •  
5.
  • Glodzik, Dominik, et al. (författare)
  • Mutational mechanisms of amplifications revealed by analysis of clustered rearrangements in breast cancers
  • 2018
  • Ingår i: Annals of Oncology. - : Elsevier BV. - 1569-8041 .- 0923-7534.
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundComplex clusters of rearrangements are a challenge in interpretation of cancer genomes. Some clusters of rearrangements demarcate clear amplifications of driver oncogenes but others are less well understood. A detailed analysis of rearrangements within these complex clusters could reveal new insights into selection and underlying mutational mechanisms.Patients and methodsHere, we systematically investigate rearrangements that are densely clustered in individual tumours in a cohort of 560 breast cancers. Applying an agnostic approach, we identify 21 hotspots where clustered rearrangements recur across cancers.ResultsSome hotspots coincide with known oncogene loci including CCND1, ERBB2, ZNF217, chr8:ZNF703/FGFR1, IGF1R, and MYC. Others contain cancer genes not typically associated with breast cancer: MCL1, PTP4A1, and MYB. Intriguingly, we identify clustered rearrangements that physically connect distant hotspots. In particular, we observe simultaneous amplification of chr8:ZNF703/FGFR1 and chr11:CCND1 where deep analysis reveals that a chr8–chr11 translocation is likely to be an early, critical, initiating event.ConclusionsWe present an overview of complex rearrangements in breast cancer, highlighting a potential new way for detecting drivers and revealing novel mechanistic insights into the formation of two common amplicons.
  •  
6.
  • Johansson, Henrik J., et al. (författare)
  • Breast cancer quantitative proteome and proteogenomic landscape
  • 2019
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • In the preceding decades, molecular characterization has revolutionized breast cancer (BC) research and therapeutic approaches. Presented herein, an unbiased analysis of breast tumor proteomes, inclusive of 9995 proteins quantified across all tumors, for the first time recapitulates BC subtypes. Additionally, poor-prognosis basal-like and luminal B tumors are further subdivided by immune component infiltration, suggesting the current classification is incomplete. Proteome-based networks distinguish functional protein modules for breast tumor groups, with co-expression of EGFR and MET marking ductal carcinoma in situ regions of normal-like tumors and lending to a more accurate classification of this poorly defined subtype. Genes included within prognostic mRNA panels have significantly higher than average mRNA-protein correlations, and gene copy number alterations are dampened at the protein-level; underscoring the value of proteome quantification for prognostication and phenotypic classification. Furthermore, protein products mapping to non-coding genomic regions are identified; highlighting a potential new class of tumor-specific immunotherapeutic targets.
  •  
7.
  • Lomakin, Artem, et al. (författare)
  • Spatial genomics maps the structure, nature and evolution of cancer clones
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611:7936, s. 594-602
  • Tidskriftsartikel (refereegranskat)abstract
    • Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology. 
  •  
8.
  • Staaf, Johan, et al. (författare)
  • RNA sequencing-based single sample predictors of molecular subtype and risk of recurrence for clinical assessment of early-stage breast cancer
  • 2022
  • Ingår i: npj Breast Cancer. - : Nature Publishing Group. - 2374-4677. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Multigene assays for molecular subtypes and biomarkers can aid management of early invasive breast cancer. Using RNA-sequencing we aimed to develop single-sample predictor (SSP) models for clinical markers, subtypes, and risk of recurrence (ROR). A cohort of 7743 patients was divided into training and test set. We trained SSPs for subtypes and ROR assigned by nearest-centroid (NC) methods and SSPs for biomarkers from histopathology. Classifications were compared with Prosigna in two external cohorts (ABiM, n = 100 and OSLO2-EMIT0, n = 103). Prognostic value was assessed using distant recurrence-free interval. Agreement between SSP and NC for PAM50 {five subtypes) was high (85%, Kappa = 0.78) for Subtype (four subtypes) very high {90%, Kappa = 0.84) and for ROR risk category high (84%, Kappa = 0.75, weighted Kappa = 0.90). Prognostic value was assessed as equivalent and clinically relevant. Agreement with histopathology was very high or high for receptor status, while moderate for Ki67 status and poor for Nottingham histological grade. SSP and Prosigna concordance was high for subtype (OSLO-EMIT0 83%, Kappa = 0.73 and ABiM 80%, Kappa = 0.72) and moderate and high for ROR risk category (68 and 84%, Kappa = 0.50 and 0.70, weighted Kappa = 0.70 and 0.78). Pooled concordance for emulated treatment recommendation dichotomized for chemotherapy was high (85%, Kappa = 0.66). Retrospective evaluation suggested that SSP application could change chemotherapy recommendations for up to 17% of postmenopausal ER+/HER2-/N0 patients with balanced escalation and de-escalation. Results suggest that NC and SSP models are interchangeable on a group-level and nearly so on a patient level and that SSP models can be derived to closely match clinical tests.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (8)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Vallon-Christersson, ... (3)
Staaf, Johan (3)
Børresen-Dale, Anne- ... (2)
Kristensen, Vessela ... (2)
Borg, Åke (2)
Nik-Zainal, Serena (2)
visa fler...
Richardson, Andrea L ... (2)
Campbell, Peter J. (2)
Bathen, Tone F (2)
Glodzik, Dominik (2)
Hofvind, Solveig (2)
Bendahl, Pär Ola (1)
Rydén, Lisa (1)
Hedenfalk, Ingrid (1)
Nilsson, Mats (1)
Huss, Mikael (1)
Brismar, Hjalmar (1)
Larsson, Christer (1)
Ehinger, Anna (1)
Stunnenberg, Hendrik ... (1)
Borresen-Dale, Anne- ... (1)
Sennblad, Bengt (1)
Steen Carlsson, Kata ... (1)
Zhao, Wei (1)
Häkkinen, Jari (1)
Vesterlund, Mattias (1)
Alexandrov, Ludmil B ... (1)
Davies, Helen R. (1)
Lakhani, Sunil R. (1)
Raine, Keiran (1)
Span, Paul N. (1)
Yates, Lucy R. (1)
Stratton, Michael R. (1)
Morganella, Sandro (1)
Lehtio, Janne (1)
Lindman, Henrik (1)
Loman, Niklas (1)
Olofsson, Helena (1)
Fredlund, Erik (1)
Abel, Edvard (1)
Strell, Carina (1)
Easton, Douglas (1)
Li, Tong (1)
Barjesteh van Waalwi ... (1)
Taskén, Kjetil (1)
F Haj Mohammad, Soem ... (1)
Fagereng, Gro Live (1)
Sørum Falk, Ragnhild (1)
Helland, Åslaug (1)
Jalkanen, Katriina (1)
visa färre...
Lärosäte
Lunds universitet (5)
Uppsala universitet (3)
Stockholms universitet (2)
Kungliga Tekniska Högskolan (1)
Handelshögskolan i Stockholm (1)
Karolinska Institutet (1)
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (8)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy