SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruuth J) "

Sökning: WFRF:(Ruuth J)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ruuth, M., et al. (författare)
  • Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, ismodifiable, and associates with future cardiovascular deaths
  • 2018
  • Ingår i: European Heart Journal. - : Oxford University Press (OUP). - 0195-668X .- 1522-9645. ; 39:27
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Low-density lipoprotein (LDL) particles cause atherosclerotic cardiovascular disease (ASCVD) through their retention, modification, and accumulation within the arterial intima. High plasma concentrations of LDL drive this disease, but LDL quality may also contribute. Here, we focused on the intrinsic propensity of LDL to aggregate upon modification. We examined whether inter-individual differences in this quality are linked with LDL lipid composition and coronary artery disease (CAD) death, and basic mechanisms for plaque growth and destabilization. Methods and results We developed a novel, reproducible method to assess the susceptibility of LDL particles to aggregate during lipolysis induced ex vivo by human recombinant secretory sphingomyelinase. Among patients with an established CAD, we found that the presence of aggregation-prone LDL was predictive of future cardiovascular deaths, independently of conventional risk factors. Aggregation-prone LDL contained more sphingolipids and less phosphatidylcholines than did aggregation-resistant LDL. Three interventions in animal models to rationally alter LDL composition lowered its susceptibility to aggregate and slowed atherosclerosis. Similar compositional changes induced in humans by PCSK9 inhibition or healthy diet also lowered LDL aggregation susceptibility. Aggregated LDL in vitro activated macrophages and T cells, two key cell types involved in plaque progression and rupture. Conclusion Our results identify the susceptibility of LDL to aggregate as a novel measurable and modifiable factor in the progression of human ASCVD.
  •  
2.
  • Jantti, H, et al. (författare)
  • Human PSEN1 Mutant Glia Improve Spatial Learning and Memory in Aged Mice
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:24
  • Tidskriftsartikel (refereegranskat)abstract
    • The PSEN1 ΔE9 mutation causes a familial form of Alzheimer’s disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aβ42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aβ42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aβ42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.
  •  
3.
  •  
4.
  •  
5.
  • Sattu, Kamaraj, et al. (författare)
  • Phosphoproteomic analysis of anaplastic lymphoma kinase (ALK) downstream signaling pathways identifies signal transducer and activator of transcription 3 as a functional target of activated ALK in neuroblastoma cells
  • 2013
  • Ingår i: The FEBS Journal. - : Wiley-Blackwell. - 1742-464X .- 1742-4658. ; 280:21, s. 5269-5282
  • Tidskriftsartikel (refereegranskat)abstract
    • Activation of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is a key oncogenic mechanism in a growing number of tumor types. In the majority of cases, ALK is activated by fusion with a dimerizing partner protein as a result of chromosomal translocation events, most studied in the case of the nucleophosmin-ALK and echinoderm microtubule-associated protein-like 4-ALK oncoproteins. It is now also appreciated that the full-length ALK receptor can be activated by point mutations and by deletions within the extracellular domain, such as those observed in neuroblastoma. Several studies have employed phosphoproteomics approaches to find substrates of ALK fusion proteins. In this study, we used MS-based phosphotyrosine profiling to characterize phosphotyrosine signaling events associated with the full-length ALK receptor. A number of previously identified and novel targets were identified. One of these, signal transducer and activator of transcription 3 (STAT3), has previously been observed to be activated in response to oncogenic ALK signaling, but the significance of this in signaling from the full-length ALK receptor has not been explored further. We show here that activated ALK robustly activates STAT3 on Tyr705 in a number of independent neuroblastoma cell lines. Furthermore, knockdown of STAT3 by RNA interference resulted in a reduction in myelocytomatosis neuroblastom (MYCN) protein levels downstream of ALK signaling. These observations, together with a decreased level of MYCN and inhibition of neuroblastoma cell growth in the presence of STAT3 inhibitors, suggest that activation of STAT3 is important for ALK signaling activity in neuroblastoma.
  •  
6.
  • Schönherr, Christina, et al. (författare)
  • Anaplastic Lymphoma Kinase (ALK) regulates initiation of transcription of MYCN in neuroblastoma cells
  • 2012
  • Ingår i: Oncogene. - : Springer Science and Business Media LLC. - 0950-9232 .- 1476-5594. ; 31:50, s. 5193-5200
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroblastoma is a neural crest-derived embryonal tumour of the postganglionic sympathetic nervous system and a disease with several different chromosomal gains and losses, which include MYCN-amplified neuroblastoma on chromosome 2, deletions of parts of the chromosomes 1p and 11q, gain of parts of 17q and triploidy. Recently, activating mutations of the ALK (Anaplastic Lymphoma Kinase) RTK (Receptor Tyrosine Kinase) gene have been described in neuroblastoma. A meta-analysis of neuroblastoma cases revealed that ALK mutations (49 of 709 cases) in relation to genomic subtype were most frequently observed in MYCN amplified tumours (8.9%), correlating with a poor clinical outcome. MYCN proteins target proliferation and apoptotic pathways, and have an important role in the progression of neuroblastoma. Here, we show that both wild-type and gain-of-function mutants in ALK are able to stimulate transcription at the MYCN promoter and initiate mRNA transcription of the MYCN gene in both neuronal and neuroblastoma cell lines. Further, this stimulation of MYCN gene transcription and de novo MYCN protein expression is abrogated by specific ALK inhibitors, such as crizotinib (PF-2341066), NVP-TAE684, and by small interfering RNA to ALK resulting in a decrease in proliferation rate. Finally, co-transfection of ALK gain-of-function mutations together with MYCN leads to an increase in transformation potential. Taken together, our results indicate that ALK signalling regulates initiation of transcription of the MYCN gene providing a possible explanation for the poor clinical outcome observed when MYCN is amplified together with activated ALK.
  •  
7.
  • Thanikkal, Edvin J., et al. (författare)
  • The Yersinia pseudotuberculosis Cpx envelope stress system contributes to transcriptional activation of rovM
  • 2019
  • Ingår i: Virulence. - : Taylor & Francis Group. - 2150-5594 .- 2150-5608. ; 10:1, s. 37-57
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity. Concomitantly, this pathway also down-regulates key determinants of virulence. In Yersinia, cpxA deletion accumulates high levels of phosphorylated CpxR (CpxR~P). Accumulated CpxR~P directly repressed rovA expression and this limited expression of virulence-associated processes. A second transcriptional regulator, RovM, also negatively regulates rovA expression in response to nutrient stress. Hence, this study aimed to determine if CpxR~P can influence rovA expression through control of RovM levels. We determined that the active CpxR~P isoform bound to the promoter of rovM and directly induced its expression, which naturally associated with a concurrent reduction in rovA expression. Site-directed mutagenesis of the CpxR~P binding sequence in the rovM promoter region desensitised rovM expression to CpxR~P. These data suggest that accumulated CpxR~P inversely manipulates the levels of two global transcriptional regulators, RovA and RovM, and this would be expected to have considerable influence on Yersinia pathophysiology and metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy