SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ruzich Emily) "

Sökning: WFRF:(Ruzich Emily)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Delfin, Carl, et al. (författare)
  • Prolonged NoGo P3 latency as a possible neurobehavioral correlate of aggressive and antisocial behaviors : A Go/NoGo ERP study
  • 2022
  • Ingår i: Biological Psychology. - : Elsevier BV. - 0301-0511 .- 1873-6246. ; 168
  • Tidskriftsartikel (refereegranskat)abstract
    • Aggressive and antisocial behaviors are detrimental to society and constitute major challenges in forensic mental health settings, yet the associated neural circuitry remains poorly understood. Here, we investigated differences in aggressive and antisocial behaviors between healthy controls (n = 20) and violent mentally disordered offenders (MDOs; n = 26), and examined associations between aggressive and antisocial behaviors, behavioral inhibitory control, and neurophysiological activity across the whole sample (n = 46). Event-related potentials were obtained using EEG while participants completed a Go/NoGo response inhibition task, and aggressive and antisocial behaviors were assessed with the Life History of Aggression (LHA) instrument. Using a robust Bayesian linear regression approach, we found that MDOs scored substantially higher than healthy controls on LHA Aggression and Antisocial subscales. Using the whole sample and after adjusting for age, we found that scores on the LHA Aggression and Antisocial subscales were robustly associated with longer NoGo P3 latency, and less robustly with longer NoGo N2 latency. Post-hoc analyzes suggested that healthy controls and MDOs exhibited similar associations. With several limitations in mind, we suggest that prolonged NoGo P3 latency, reflecting decreased neural efficiency during the later stages of conflict monitoring or outcome evaluation, is a potential neurobehavioral correlate of aggressive and antisocial behaviors.
  •  
3.
  • Delfin, Carl, et al. (författare)
  • Trait Disinhibition and NoGo Event-Related Potentials in Violent Mentally Disordered Offenders and Healthy Controls
  • 2020
  • Ingår i: Frontiers in Psychiatry. - : Frontiers Media SA. - 1664-0640. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • Trait disinhibition may function as a dispositional liability toward maladaptive behaviors relevant in the treatment of mentally disordered offenders (MDOs). Reduced amplitude and prolonged latency of the NoGo N2 and P3 event-related potentials have emerged as promising candidates for transdiagnostic, biobehavioral markers of trait disinhibition, yet no study has specifically investigated these two components in violent, inpatient MDOs. Here, we examined self-reported trait disinhibition, experimentally assessed response inhibition, and NoGo N2 and P3 amplitude and latency in male, violent MDOs (N = 27) and healthy controls (N = 20). MDOs had a higher degree of trait disinhibition, reduced NoGo P3 amplitude, and delayed NoGo P3 latency compared to controls. The reduced NoGo P3 amplitude and delayed NoGo P3 latency in MDOs may stem from deficits during monitoring or evaluation of behavior. NoGo P3 latency was associated with increased trait disinhibition in the whole sample, suggesting that trait disinhibition may be associated with reduced neural efficiency during later stages of outcome monitoring or evaluation. Findings for NoGo N2 amplitude and latency were small and non-robust. With several limitations in mind, this is the first study to demonstrate attenuated NoGo P3 amplitude and delayed NoGo P3 latency in violent, inpatient MDOs compared to healthy controls.
  •  
4.
  • Ruzich, Emily, et al. (författare)
  • Characterizing hippocampal dynamics with MEG: A systematic review and evidence-based guidelines
  • 2019
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 40:4, s. 1353-1375
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampus, a hub of activity for a variety of important cognitive processes, is a target of increasing interest for researchers and clinicians. Magnetoencephalography (MEG) is an attractive technique for imaging spectro-temporal aspects of function, for example, neural oscillations and network timing, especially in shallow cortical structures. However, the decrease in MEG signal-to-noise ratio as a function of source depth implies that the utility of MEG for investigations of deeper brain structures, including the hippocampus, is less clear. To determine whether MEG can be used to detect and localize activity from the hippocampus, we executed a systematic review of the existing literature and found successful detection of oscillatory neural activity originating in the hippocampus with MEG. Prerequisites are the use of established experimental paradigms, adequate coregistration, forward modeling, analysis methods, optimization of signal-to-noise ratios, and protocol trial designs that maximize contrast for hippocampal activity while minimizing those from other brain regions. While localizing activity to specific sub-structures within the hippocampus has not been achieved, we provide recommendations for improving the reliability of such endeavors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy