SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryan Johnny) "

Sökning: WFRF:(Ryan Johnny)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  • Chia, Sean, et al. (författare)
  • A Relationship between the Structures and Neurotoxic Effects of Aβ Oligomers Stabilized by Different Metal Ions
  • Ingår i: ACS Chemical Neuroscience. - 1948-7193.
  • Tidskriftsartikel (refereegranskat)abstract
    • Oligomeric assemblies of the amyloid β peptide (Aβ) have been investigated for over two decades as possible neurotoxic agents in Alzheimer’s disease. However, due to their heterogeneous and transient nature, it is not yet fully established which of the structural features of these oligomers may generate cellular damage. Here, we study distinct oligomer species formed by Aβ40 (the 40-residue form of Aβ) in the presence of four different metal ions (Al3+, Cu2+, Fe2+, and Zn2+) and show that they differ in their structure and toxicity in human neuroblastoma cells. We then describe a correlation between the size of the oligomers and their neurotoxic activity, which provides a type of structure-toxicity relationship for these Aβ40 oligomer species. These results provide insight into the possible role of metal ions in Alzheimer’s disease by the stabilization of Aβ oligomers.
  •  
3.
  • Habchi, Johnny, et al. (författare)
  • Systematic development of small molecules to inhibit specific microscopic steps of Aβ42 aggregation in Alzheimer's disease
  • 2017
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 114:2, s. 200-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The aggregation of the 42-residue form of the amyloid-β peptide (Aβ42) is a pivotal event in Alzheimer's disease (AD). The use of chemical kinetics has recently enabled highly accurate quantifications of the effects of small molecules on specific microscopic steps in Aβ42 aggregation. Here, we exploit this approach to develop a rational drug discovery strategy against Aβ42 aggregation that uses as a readout the changes in the nucleation and elongation rate constants caused by candidate small molecules. We thus identify a pool of compounds that target specific microscopic steps in Aβ42 aggregation. We then test further these small molecules in human cerebrospinal fluid and in a Caenorhabditis elegans model of AD. Our results show that this strategy represents a powerful approach to identify systematically small molecule lead compounds, thus offering an appealing opportunity to reduce the attrition problem in drug discovery.
  •  
4.
  • Limbocker, Ryan, et al. (författare)
  • Trodusquemine enhances Aβ42 aggregation but suppresses its toxicity by displacing oligomers from cell membranes
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Transient oligomeric species formed during the aggregation process of the 42-residue form of the amyloid-β peptide (Aβ42) are key pathogenic agents in Alzheimer’s disease (AD). To investigate the relationship between Aβ42 aggregation and its cytotoxicity and the influence of a potential drug on both phenomena, we have studied the effects of trodusquemine. This aminosterol enhances the rate of aggregation by promoting monomer-dependent secondary nucleation, but significantly reduces the toxicity of the resulting oligomers to neuroblastoma cells by inhibiting their binding to the cellular membranes. When administered to a C. elegans model of AD, we again observe an increase in aggregate formation alongside the suppression of Aβ42-induced toxicity. In addition to oligomer displacement, the reduced toxicity could also point towards an increased rate of conversion of oligomers to less toxic fibrils. The ability of a small molecule to reduce the toxicity of oligomeric species represents a potential therapeutic strategy against AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy