SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryder JW) "

Sökning: WFRF:(Ryder JW)

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Barnes, BR, et al. (författare)
  • Isoform-specific regulation of 5' AMP-activated protein kinase in skeletal muscle from obese Zucker (fa/fa) rats in response to contraction
  • 2002
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 51:9, s. 2703-2708
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucose transport can be activated in skeletal muscle in response to insulin via activation of phosphoinositide (PI) 3-kinase and in response to contractions or hypoxia, presumably via activation of 5′ AMP-activated protein kinase (AMPK). We determined the effects of insulin and muscle contraction/hypoxia on PI 3-kinase, AMPK, and glucose transport activity in epitrochlearis skeletal muscle from insulin-resistant Zucker (fa/ fa) rats. Insulin-stimulated glucose transport in isolated skeletal muscle was reduced 47% in obese versus lean rats, with a parallel 42% reduction in tyrosine-associated PI 3-kinase activity. Contraction and hypoxia elicited normal responses for glucose transport in skeletal muscle from insulin-resistant obese rats. Isoform-specific AMPK activity was measured in skeletal muscle in response to insulin, contraction, or hypoxia. Contraction increased AMPKα1 activity 2.3-fold in lean rats, whereas no effect was noted in obese rats. Hypoxia increased AMPKα1 activity to a similar extent (more than sixfold) in lean and obese rats. Regardless of genotype, contraction, and hypoxia, each increased AMPKα2 activity more than fivefold, whereas insulin did not alter either AMPKα1 or -α2 activity in skeletal muscle. In conclusion, obesity-related insulin resistance is associated with an isoform-specific impairment in AMPKα1 in response to contraction. However, this impairment does not appear to affect contraction-stimulated glucose transport. Activation of AMPKα2 in response to muscle contraction/ exercise is associated with a parallel and normal increase in glucose transport in insulin-resistant skeletal muscle.
  •  
3.
  •  
4.
  • Chibalin, AV, et al. (författare)
  • Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle: differential effects on insulin-receptor substrates 1 and 2
  • 2000
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 97:1, s. 38-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Level of physical activity is linked to improved glucose homeostasis. We determined whether exercise alters the expression and/or activity of proteins involved in insulin-signal transduction in skeletal muscle. Wistar rats swam 6 h per day for 1 or 5 days. Epitrochlearis muscles were excised 16 h after the last exercise bout, and were incubated with or without insulin (120 nM). Insulin-stimulated glucose transport increased 30% and 50% after 1 and 5 days of exercise, respectively. Glycogen content increased 2- and 4-fold after 1 and 5 days of exercise, with no change in glycogen synthase expression. Protein expression of the glucose transporter GLUT4 and the insulin receptor increased 2-fold after 1 day, with no further change after 5 days of exercise. Insulin-stimulated receptor tyrosine phosphorylation increased 2-fold after 5 days of exercise. Insulin-stimulated tyrosine phosphorylation of insulin-receptor substrate (IRS) 1 and associated phosphatidylinositol (PI) 3-kinase activity increased 2.5- and 3.5-fold after 1 and 5 days of exercise, despite reduced (50%) IRS-1 protein content after 5 days of exercise. After 1 day of exercise, IRS-2 protein expression increased 2.6-fold and basal and insulin-stimulated IRS-2 associated PI 3-kinase activity increased 2.8-fold and 9-fold, respectively. In contrast to IRS-1, IRS-2 expression and associated PI 3-kinase activity normalized to sedentary levels after 5 days of exercise. Insulin-stimulated Akt phosphorylation increased 5-fold after 5 days of exercise. In conclusion, increased insulin-stimulated glucose transport after exercise is not limited to increased GLUT4 expression. Exercise leads to increased expression and function of several proteins involved in insulin-signal transduction. Furthermore, the differential response of IRS-1 and IRS-2 to exercise suggests that these molecules have specialized, rather than redundant, roles in insulin signaling in skeletal muscle.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy