SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryder Stuart D.) "

Sökning: WFRF:(Ryder Stuart D.)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Chomiuk, Laura, et al. (författare)
  • Classical Novae at Radio Wavelengths
  • 2021
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 257:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present radio observations (1-40 GHz) for 36 classical novae, representing data from over five decades compiled from the literature, telescope archives, and our own programs. Our targets display a striking diversity in their optical parameters (e.g., spanning optical fading timescales, t (2) = 1-263 days), and we find a similar diversity in the radio light curves. Using a brightness temperature analysis, we find that radio emission from novae is a mixture of thermal and synchrotron emission, with nonthermal emission observed at earlier times. We identify high brightness temperature emission (T ( B ) > 5 x 10(4) K) as an indication of synchrotron emission in at least nine (25%) of the novae. We find a class of synchrotron-dominated novae with mildly evolved companions, exemplified by V5589 Sgr and V392 Per, that appear to be a bridge between classical novae with dwarf companions and symbiotic binaries with giant companions. Four of the novae in our sample have two distinct radio maxima (the first dominated by synchrotron and the later by thermal emission), and in four cases the early synchrotron peak is temporally coincident with a dramatic dip in the optical light curve, hinting at a common site for particle acceleration and dust formation. We publish the light curves in a machine-readable table and encourage the use of these data by the broader community in multiwavelength studies and modeling efforts.
  •  
3.
  • Jencson, Jacob E., et al. (författare)
  • The SPIRITS Sample of Luminous Infrared Transients : Uncovering Hidden Supernovae and Dusty Stellar Outbursts in Nearby Galaxies
  • 2019
  • Ingår i: Astrophysical Journal. - : IOP PUBLISHING LTD. - 0004-637X .- 1538-4357. ; 886:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a systematic study of the most luminous (M-IR [Vega magnitudes] brighter than ?14) infrared (IR) transients discovered by the SPitzer InfraRed Intensive Transients Survey (SPIRITS) between 2014 and 2018 in nearby galaxies (D < 35 Mpc). The sample consists of nine events that span peak IR luminosities of M-[4.5],M-peak between ?14 and ?18.2, show IR colors between 0.2;<;([3.6]?[4.5]);<;3.0, and fade on timescales between 55 days;t(fade);<;480 days. The two reddest events (A(V) > 12) show multiple, luminous IR outbursts over several years and have directly detected, massive progenitors in archival imaging. With analyses of extensive, multiwavelength follow-up, we suggest the following possible classifications: five obscured core-collapse supernovae (CCSNe), two erupting massive stars, one luminous red nova, and one intermediate-luminosity red transient. We define a control sample of all optically discovered transients recovered in SPIRITS galaxies and satisfying the same selection criteria. The control sample consists of eight CCSNe and one Type;Iax SN. We find that 7 of the 13 CCSNe in the SPIRITS sample have lower bounds on their extinction of 2;A(V);<;8. We estimate a nominal fraction of CCSNe in nearby galaxies that are missed by optical surveys as high as
  •  
4.
  • Ni, Yuan Qi, et al. (författare)
  • Infant-phase reddening by surface Fe-peak elements in a normal type Ia supernova
  • 2022
  • Ingår i: Nature Astronomy. - : Springer Science and Business Media LLC. - 2397-3366. ; 6:5, s. 568-576
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Ia supernovae are thermonuclear explosions of white dwarf stars. They play a central role in the chemical evolution of the Universe and are an important measure of cosmological distances. However, outstanding questions remain about their origins. Despite extensive efforts to obtain natal information from their earliest signals, observations have thus far failed to identify how the majority of them explode. Here, we present infant-phase detections of SN 2018aoz from a very low brightness of −10.5 AB absolute magnitude, revealing a hitherto unseen plateau in the B band that results in a rapid redward colour evolution between 1.0 and 12.4 hours after the estimated epoch of first light. The missing B-band flux is best explained by line-blanket absorption from Fe-peak elements in the outer 1% of the ejected mass. The observed B − V colour evolution of the supernova also matches the prediction from an over-density of Fe-peak elements in the same outer 1% of the ejected mass, whereas bluer colours are expected from a purely monotonic distribution of Fe-peak elements. The presence of excess nucleosynthetic material in the extreme outer layers of the ejecta points to enhanced surface nuclear burning or extended subsonic mixing processes in some normal type Ia SN explosions.
  •  
5.
  • Ni, Yuan Qi, et al. (författare)
  • The Origin and Evolution of the Normal Type Ia SN 2018aoz with Infant-phase Reddening and Excess Emission
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 946:1
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2018aoz is a Type Ia SN with a B-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hα and He i favor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [O I] and He i disfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Fe II] and [Ni II]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1D models are incompatible with the infant-phase excess emission, Bmax–Vmax color, and weak strength of nebular-phase [Ca II]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.
  •  
6.
  •  
7.
  • Hosseinzadeh, Griffin, et al. (författare)
  • Constraining the Progenitor System of the Type Ia Supernova 2021aefx
  • 2022
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 933:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence optical and ultraviolet light curves of the normal Type Ia supernova (SN) 2021aefx, which shows an early bump during the first two days of observation. This bump may be a signature of interaction between the exploding white dwarf and a nondegenerate binary companion, or it may be intrinsic to the white dwarf explosion mechanism. In the case of the former, the short duration of the bump implies a relatively compact main-sequence companion star, although this conclusion is viewing-angle dependent. Our best-fit companion-shocking and double-detonation models both overpredict the UV luminosity during the bump, and existing nickel-shell models do not match the strength and timescale of the bump. We also present nebular spectra of SN 2021aefx, which do not show the hydrogen or helium emission expected from a nondegenerate companion, as well as a radio nondetection that rules out all symbiotic progenitor systems and most accretion disk winds. Our analysis places strong but conflicting constraints on the progenitor of SN 2021aefx; no current model can explain all of our observations.
  •  
8.
  • Hosseinzadeh, Griffin, et al. (författare)
  • The Early Light Curve of SN 2023bee : Constraining Type Ia Supernova Progenitors the Apian Way
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 953:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present very early photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2023bee, starting about 8 hr after the explosion, which reveal a strong excess in the optical and nearest UV (U and UVW1) bands during the first several days of explosion. This data set allows us to probe the nature of the binary companion of the exploding white dwarf and the conditions leading to its ignition. We find a good match to the Kasen model in which a main-sequence companion star stings the ejecta with a shock as they buzz past. Models of double detonations, shells of radioactive nickel near the surface, interaction with circumstellar material, and pulsational delayed detonations do not provide good matches to our light curves. We also observe signatures of unburned material, in the form of carbon absorption, in our earliest spectra. Our radio nondetections place a limit on the mass-loss rate from the putative companion that rules out a red giant but allows a main-sequence star. We discuss our results in the context of other similar SNe Ia in the literature.
  •  
9.
  • Hosseinzadeh, Griffin, et al. (författare)
  • Weak Mass Loss from the Red Supergiant Progenitor of the Type II SN 2021yja
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 935:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence optical, ultraviolet (UV), and near-infrared data of the nearby (D approximate to 23 Mpc) Type II supernova (SN) 2021yja. Many Type II SNe show signs of interaction with circumstellar material (CSM) during the first few days after explosion, implying that their red supergiant (RSG) progenitors experience episodic or eruptive mass loss. However, because it is difficult to discover SNe early, the diversity of CSM configurations in RSGs has not been fully mapped. SN 2021yja, first detected within approximate to 5.4 hours of explosion, shows some signatures of CSM interaction (high UV luminosity and radio and x-ray emission) but without the narrow emission lines or early light-curve peak that can accompany CSM. Here we analyze the densely sampled early light curve and spectral series of this nearby SN to infer the properties of its progenitor and CSM. We find that the most likely progenitor was an RSG with an extended envelope, encompassed by low-density CSM. We also present archival Hubble Space Telescope imaging of the host galaxy of SN 2021yja, which allows us to place a stringent upper limit of less than or similar to 9 M-circle dot; on the progenitor mass. However, this is in tension with some aspects of the SN evolution, which point to a more massive progenitor. Our analysis highlights the need to consider progenitor structure when making inferences about CSM properties, and that a comprehensive view of CSM tracers should be made to give a fuller view of the last years of RSG evolution.
  •  
10.
  • Kool, Erik C., et al. (författare)
  • A radio-detected type Ia supernova with helium-rich circumstellar material
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 617:7961, s. 477-482
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Ia supernovae (SNe Ia) are thermonuclear explosions of degenerate white dwarf stars destabilized by mass accretion from a companion star1, but the nature of their progenitors remains poorly understood. A way to discriminate between progenitor systems is through radio observations; a non-degenerate companion star is expected to lose material through winds2 or binary interaction3 before explosion, and the supernova ejecta crashing into this nearby circumstellar material should result in radio synchrotron emission. However, despite extensive efforts, no type Ia supernova (SN Ia) has ever been detected at radio wavelengths, which suggests a clean environment and a companion star that is itself a degenerate white dwarf star4,5. Here we report on the study of SN 2020eyj, a SN Ia showing helium-rich circumstellar material, as demonstrated by its spectral features, infrared emission and, for the first time in a SN Ia to our knowledge, a radio counterpart. On the basis of our modelling, we conclude that the circumstellar material probably originates from a single-degenerate binary system in which a white dwarf accretes material from a helium donor star, an often proposed formation channel for SNe Ia (refs. 6,7). We describe how comprehensive radio follow-up of SN 2020eyj-like SNe Ia can improve the constraints on their progenitor systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy